Self Studies

System of Particles and Rotational Motion Test - 57

Result Self Studies

System of Particles and Rotational Motion Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A uniform cube of side a and mass m rests on a rough horizontal surface. A horizontal force F is applied normal to face at a point that is directly above the centre of the face at a height $$\cfrac{\alpha}{4}$$ above the centre. The minimum value of F for which the cube begins to topple above an edge without sliding is:
    Solution

  • Question 2
    1 / -0
    A solid cylinder of mass $$M$$ and radius $$R$$ is rolling without slipping on a horizontal plane with a speed $$v$$. it the rolls up an inclined plane of inclination $$\theta$$ to a maximum height given by
    Solution
    $$\begin{array}{r}\text { Given - } * \text { Solid cylinder mass }=M \text { and } \\\text { radius } R \text { rolling without slip. }\end{array}$$

    $$\begin{array}{l}\Rightarrow \text { kE kinetic energy }=\text { Translation } k E \\ +\text { Rotational } k E \\\Rightarrow k E_{T}=\frac{1}{2} M v^{2}+\frac{1}{2} I w^{2} \quad I \rightarrow \text { Moment of Inertia } \\\qquad k E+=\frac{1}{2} M v^{2}+\frac{1}{2}\left(\frac{M R^{2}}{2}\right) w^{2}=\frac{3}{4} M v^{2}\quad(v=\text { tuw })\end{array} $$
    $$\begin{array}{l}\text { For maximum Height by energy conservation } \\\qquad M g H=\frac{3}{4} M v^{2} \quad \Rightarrow H=\frac{3 v^{2}}{4 g}\end{array}$$
  • Question 3
    1 / -0
    The velocity of centre of mass of the system as shown in the figure.

    Solution
    Let $$V_x$$ be the $$x-$$ component of velocity of CM, $$V_x$$

    $$=\dfrac{m_1\times v_{1x}+m_2\times v_{2x}}{m_1+m_2}=\dfrac{1\times 2+2\times 2\times \dfrac{\sqrt 3}{2}}{1+2}=\dfrac{2+2\sqrt 3}{3}\,m/s$$

    Let $$V_y$$ be the $$y-$$ component of velocity of CM, $$V_y$$

    $$=\dfrac{m_1\times v_{1y}+m_2\times v_{2y}}{m_1+m_2}=\dfrac{1\times 0+2\times 2\times \dfrac 12}{1+2}=\dfrac 23\,m/s$$

    Velocity of CM

    $$\sqrt{V_x^2-V_y^2}=(\dfrac{2+2\sqrt 3}{2})\hat i-\dfrac 23 \hat j$$
  • Question 4
    1 / -0
    The end A of a ladder AP of length 5 m, kept inclined to a vertical wall is slipping over a horizontal surface, when A is at a distance of 3 m from the wall. If velocity of centre of mass at this moment is $$1.25 m/s$$ then velocity of the lowest point A of the ladder at tis instant is :-

    Solution

  • Question 5
    1 / -0
    A system of binary stars of masses $$m_{A}$$ and $$m_{B}$$ are moving in circular orbits of radii $$r_{A}$$ and $$r_{B}$$ respectively. If $$T_{A}$$ and $$T_{B}$$ are the time periods of masses $$m_{A}$$ and $$m_{B}$$ respectively, then
  • Question 6
    1 / -0
    if a force$$ 10\hat { i } +15\hat { j } +25\hat { K }$$ acts on a system and gives an acceleration $$2\hat { i } +3\hat { j } -5\hat { K } $$ to the centre of mass of the system, the mass of the system is :
    Solution
    Given,
       $${ F }_{ cm }=10\hat { i } +15\hat { j } +25\hat { k } \\ { a }_{ cm }=2\hat { i } +3\hat { j } -5\hat { k } $$
    We know that force is  multiplication of mass and acceleration therefore,
      $${ F }_{ cm }=m\hat { a } \\ 10\hat { i } +15\hat { j } +25\hat { k } =m(2\hat { i } +3\hat { j } -5\hat { k } )\\ m=\frac { 10\hat { i } +15\hat { j } +25\hat { k }  }{ 2\hat { i } +3\hat { j } -5\hat { k }  } \\ m=\frac { \sqrt { { 10 }^{ 2 }+{ 15 }^{ 2 }+{ 25 }^{ 2 } }  }{ \sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 } }  } \\ m=\frac { \sqrt { 950 }  }{ \sqrt { 38 }  } \\ m=\frac { 5\sqrt { 38 }  }{ \sqrt { 38 }  } =5\quad units$$ 
    Hence, correct option is $$(A)$$
  • Question 7
    1 / -0
    Three man $$  A, B \& C  $$ of mass $$  40 \mathrm{kg}, 50 \mathrm{kg} \& 60 \mathrm{kg}  $$ are standing on a plank of mass $$90  \mathrm{kg}  $$ .which is kept on a smooth horizontal plane. If $$ \mathrm{A} \& \mathrm{C}  $$ exchange their positions then mass $$ \mathrm{B}  $$ will shift

  • Question 8
    1 / -0
    A rod of moment of inertia I and length L is suspended from a fixed end and given small oscillations about the point of suspension , the restoring torque is found to be -(mgL/2) $$sin\theta $$ What will be the angular equation of motion of the SHM
    Solution
    $$\begin{aligned}\text { Given }-& * \text { Restoring tooque } \tau=-\frac{m g L}{2} \sin\theta \\ & * \text { Moment of Inertia }=I\end{aligned} $$
    $$\begin{array}{l}\text { Restoring torque- } \\\qquad \tau=-\frac{m g L}{2} \sin \theta \\\text { for very small deflection }\sin\theta\approx\theta \\\Rightarrow \tau=\frac{m g L}{2} \theta \\\text { and }\alpha=\frac{d^{2}\theta}{d t^{2}} \\\Rightarrow\quad I \cdot \frac{d^{2} \theta}{d t^{2}}=\frac{-m g L}{2} \theta \\\Rightarrow\quad\frac{d^{2} \theta}{d t^{2}}+\frac{m g L}{2 I} \theta=0\end{array}$$
  • Question 9
    1 / -0
    Three identical rods, each of length I, are joined to form a rigid equilateral triangle. Its radius of gyration about an axis passing through a corner and perpendicular to the plane of the triangle is
    Solution
    $$\begin{array}{l}\text { we know } \\\text { Moment of Inertia of a Rod about its axis } \\\text { and perpendicular is - } \\\qquad I=\frac{M L^{2}}{3} \\\Rightarrow I_{0 A}=I_{0 B}=\frac{M L^{2}}{3} \\\text { * Moment of Inertia of a Rod about its centre } \\\qquad I_{c}=\frac{M L^{2}}{12}\end{array}$$
    $$\begin{array}{l}\Rightarrow \text { By parallel axis theorem- } \\\qquad \begin{array}{rl} I_{A B}=I_{c}+M d^{2} & d=\text { distanu from the Axis } \\ I_{A B}=\frac{M L^{2}}{12}+M\left(\frac{\sqrt{3} L}{2} L\right)^{2}=\frac{5 M L^{2}}{6}\end{array} \\\Rightarrow \text { Total moment of Inertia I }=I_{O A}+I_{D B}+I_{A B}=\frac{3 M L^{2}}{2} \\\Rightarrow \text { Radius of gyration (R)- }\end{array}$$
    $$ 3 M R^{2}=\frac{3}{2} M L^{2}\quad\Rightarrow\left[R=\frac{L}{\sqrt{2}}\right] \text { option(B) } $$

  • Question 10
    1 / -0
    Force F=300 N acting vertically upward at x=2 m, y=2 m. The magnitude of moment of force about origin is
    Solution
    $$\begin{array}{l}\text { We have force vector }\vec{F}=300 \hat{j} \\\text { and radial vector of point } \vec{\mu}=2 \hat{i}+2 \hat{j} \\\Rightarrow\text { Force moment }=\vec{r}\times\vec{F} \\ =(2 \hat{i}+2 \hat{j}) \times(300 \hat{j}) \\ =600 \hat{k} \\\text { Force moment }\bar{\tau}=600\mathrm{Nm} \\\text { Hence, option }(A) \text { is correct. }\end{array}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now