Self Studies

Gravitation Test - 39

Result Self Studies

Gravitation Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The variation of g with height or depth (r) is shown correctly by the graph in the figure (where R $$=$$ radius of the earth ), 
    Solution
    for $$r\ge R;\quad g=\cfrac { GM }{ { r }^{ 2 } } $$ - eq. 1
    For r<R; g=$$\cfrac { GMr }{ { R }^{ 3 } } $$ - eq.2
    According to relations 1 and 2
    the g vs r curve will be like 

  • Question 2
    1 / -0
    An object is dropped at the surface of the earth from the height of $$3600$$ km. Calculate the ratio of the weight of the body at that height and on the surface of the earth.
    Solution
    $$g\alpha \dfrac{1}{(R+h)^2}$$
    $$\therefore \dfrac{mg_{surface}}{mg_{height}}=\left(\dfrac{R+H}{R} \right)=\left(\dfrac{10000}{6400}\right)$$
    $$\implies 2.44$$
  • Question 3
    1 / -0
    Where will g be greatest when one goes from the centre of earth to an altitude equal to radius of earth?
    Solution
    Let at any height $$h$$ gravity due to earth will be $$g$$. 
    $$\Rightarrow mg=\dfrac{GMm}{(R+ h)^2}$$  $$\Rightarrow g=\dfrac{GM}{(R+h)^2}$$
    $$\Rightarrow g \propto \dfrac{1}{(R+h)^2}$$ 
    $$\therefore $$ As $$h$$ increases $$g$$ decreases.
    $$\Rightarrow $$ At $$h=0$$ , $$g$$ will be maximum, $$g= \dfrac{GM}{R^2}$$
    So , $$g$$ will be maximum at the surface of the earth.
  • Question 4
    1 / -0
    SI unit of G is $$Nm^{ 2 }{ kg }^{ -2 }$$. Which of the following can also be used as the SI unit of G?
    Solution
    Unit of $$G$$ is $$Nm^2kg^{-2}$$ as $$1N=kgms^{-2}$$.
    So $$G$$ can be written as 
    $$kgms^{-2}\times m^2kg^{-2}=m^3kg^{-1}s^{-2}$$
  • Question 5
    1 / -0
    If R is the radius of the earth and g is the acceleration due to gravity on the earth's surface, then mean density of the earth is
    Solution

  • Question 6
    1 / -0
    What will be acceleration due to gravity on the surface of moon if its radius is $$\frac { 1 }{ 4 } $$th the radius of the earth and its mass is $$\frac { 1 }{ 80 }$$th the mass of the earth?  
    Solution
    We know, $$g=\frac { { GM }_{ e } }{ { R }_{ e }2 } \\ and\quad g\quad '=\frac { { GM }_{ m } }{ { R }_{ m }2 } \\ \frac { g\quad ' }{ g } =\frac { M_{ m } }{ M_{ e } } \left( \frac { { R }_{ e } }{ { R }_{ m } }  \right) ^{ 2 }\\ =\frac { 1 }{ 80 } \times \left( \frac { 4 }{ 1 }  \right) ^{ 2 }=\frac { 1 }{ 5 } \\ \Rightarrow g' = \frac { g }{ 5 } $$
  • Question 7
    1 / -0
    SI unit of G is.
    Solution

    Hint: using the formula of gravitional constant

    Step1:We know that

    $$\mathrm{F}=\mathrm{G} \times \dfrac{M_{1} M_{2}}{r^{2}} \\$$

    $$\mathrm{~F} \times \mathrm{r}^{2}=\mathrm{G} \times \mathrm{M}_{1} \mathrm{M}_{2} \\$$

    $$\mathrm{~F} \times \dfrac{r^{2}}{M_{1} M_{2}}=\mathrm{G} \\$$

    $$\mathrm{G}=\mathrm{F} \times \dfrac{r^{2}}{M_{1} M_{2}}$$

    SI Unit of

    $$\text { Force }=\mathrm{F}=\text { Newton } \\$$

    $$\text { Distance }=\mathrm{R}=\mathrm{m} \\$$

    $$\text { Mass }=\mathrm{M}=\mathrm{kg}$$

    Step2: Now,

    $$\mathrm{G}=\mathrm{F} \times \dfrac{r^{2}}{M_{1} M_{2}}$$

    $$\mathrm{G}=\dfrac{\text { Newton } \times \text { Meter }^{2}}{\text { Kilogram } \times \text { Kilogram }}$$

    $$\mathrm{G}=\dfrac{\text { Newton Meter }^{2}}{\text { Kilogram }^{2}}$$

    $$\mathrm{G}=\mathrm{Nm}^{2} / \mathrm{kg}^{2}$$

    So, SI Unit of $$\mathrm{G}$$ is $$\mathrm{Nm}^{2} / \mathrm{kg}^{2}$$

     

     

     

    $$\textbf{Thus, option (D) is correct.}$$

  • Question 8
    1 / -0
    At what height, is the value of $$g$$ half that on the surface of earth? ($$R =$$ radius of the earth) 
    Solution
    $$g\quad '=\frac { { gR }^{ 2 } }{ { r }^{ 2 } } =\frac { g }{ 2 } \\ \Rightarrow \quad { r }^{ 2 }={ 2R }^{ 2 }\\ \Rightarrow r=R\sqrt { 2 } =R+h\\ \Rightarrow h=R(\sqrt { 2 } -1)\\ =R(1.414-1)=0.414R$$
  • Question 9
    1 / -0
    The value of g near the earth's surface is.
    Solution
    Its value is $$9.8\ ms^{-2}$$ on Earth. That is to say, the acceleration of gravity on the surface of the earth at sea level is $$9.8\ ms^{-2}$$. When discussing the acceleration of gravity, it was mentioned that the value of $$g$$ is dependent upon location.
  • Question 10
    1 / -0
    The magnitude of acceleration due to gravity at an altitude 'h' from the earth is equal to its magnitude at a depth 'd'. Find the relation between 'h'and 'd'. If the 'h'and 'd' both increases by $$50$$ %, are the magnitudes of acceleration due to gravity at the new altitude and the new depth equal. 
    Solution
    $${ g }_{ n }=g\left( 1-\cfrac { 2h }{ R }  \right) \\ { g }_{ d }=g\left( 1-\cfrac { d }{ R }  \right) $$
    If $${ g }_{ n }={ g }_{ d }\\ g\left( 1-\cfrac { 2h }{ R }  \right) =g\left( 1-\cfrac { d }{ R }  \right) \\ \Rightarrow \cfrac { 2h }{ R } =\cfrac { d }{ R } \\ \therefore 2h=d$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now