Hint: The weight of a body is defined as the gravitational force exerted on the body.
Step 1: Calculate the density of the earth and write the formula of the gravitational force.
$$density=\dfrac{mass}{volume}$$
$$\rho=\dfrac{M}{\dfrac{4}{3}\pi R^3}$$
Here, $$M$$ is the mass,
and $$R$$ is the radius of the earth.
The force between two masses can be expressed as,
$$F=\dfrac{GM_1M_2}{r^2}$$
Step 2: Find the value of $$h$$.
Let the mass of the earth be $$M$$ and the mass of the body is $$m$$.
The weight of the body on the earth is,
$$F=\dfrac{GMm}{R^2}$$
The weight of the body when it is at height $$h$$ is,
$$F_1=\dfrac{GMm}{(R+h)^2}$$
The weight is decreased by 1%, Hence,
$$\dfrac{F-F_1}{F} \times 100 =1$$
$$[1-\dfrac{\dfrac{GMm}{(R+h)^2}}{\dfrac{GMm}{R^2}}] \times 100 =1$$
$$\dfrac{(R+h)^2-R^2}{(R+h)^2}=\dfrac{1}{100}$$
$$\dfrac{R^2+h^2+2Rh-R^2}{(R+h)^2}=\dfrac{1}{100}$$
$$\because h<<R$$
$$\therefore {(R+h)}^2 \rightarrow R^2$$ and $$h^2$$ is very small, therefore it can be ignored.
$$\dfrac{2hR}{(R)^2}=\dfrac{1}{100}$$
$$h=\dfrac{R}{200}$$
Step 3: Finding the weight inside the earth at depth $$h$$
The weight of the body when it is at depth $$h$$ is,
$$F_2=\dfrac{GM_hm}{(R-h)^2}$$
Here $$M_h$$ is the effective mass of the earth at depth $$h$$.
$$mass=density\times volume$$
$$M_h=\rho \times \frac{4}{3}\pi (R-h)^3$$
$$M_h=\dfrac{M}{\dfrac{4}{3}\pi R^3} \times \frac{4}{3}\pi (R-h)^3$$
$$M_h=\dfrac{M}{R^3} \times(R-h)^3$$
Substituting this value in the expression of $$F_2$$
$$F_=\dfrac{GMm(R-h)}{(R)^3}$$
Step 4: Calculate the weight loss,
The weight loss can be calculated as,
$$\Delta W$$ $$=\dfrac{F-F_1}{F} \times 100 $$
$$\Delta W$$ $$=[1-\dfrac{\dfrac{GMm(R-h)}{(R)^3}}{\dfrac{GMm}{R^2}}] \times 100 $$
$$\Delta W$$ $$=[1-{\dfrac{(R-h)}{(R)}}] \times 100 $$
Substituting the value of $$h$$,
$$\Delta W =0.5%$$%
Therefore, the weight decreased by $$0.5$$%.
$$\textbf{Hence option A correct}$$