Self Studies

Gravitation Test - 42

Result Self Studies

Gravitation Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If earth were to rotate on its own axis such that the weight of a person at the equator becomes half the weight at the poles, then its time period of rotation is: ($$g$$=acceleration due to gravity near the poles and $$R$$ is the radius of earth) (Ignore equatorial bulge)
    Solution
    Let weight of the person be $$mg$$ and the angular speed of the earth be $$\omega$$.
    Thus weight of the person at poles=$$mg$$
    Weight of the person at equator=$$mg-m\omega ^2 R$$
    $$\implies mg=2(mg-m\omega ^2R)$$
    $$\implies \omega ^2R=\dfrac{g}{2}$$
    $$\implies \omega=\sqrt{\dfrac{g}{2R}}$$
    Thus time period of earth's rotation=$$\dfrac{2\pi}{\omega}$$
    $$=2\pi\sqrt{\dfrac{2R}{g}}$$

  • Question 2
    1 / -0
    When a body is at a depth 'd' from the earth surface its distance from the centre of the earth is _______
    Solution
    $$SP=d$$
    $$SQ=r$$
    $$PQ=(R-d)=$$ Distance of the from the centre of the Earth.

  • Question 3
    1 / -0
    If R is the radius of earth, the height at which the weight of a body becomes $$1/4$$ its weight on the surface of earth is :
    Solution
    At surface of the Earth, weight $$W_s=\dfrac{GMm}{R^2}$$
    At height, h of the Earth weight $$W_h=\dfrac{GMm}{(R+h)^2}$$
    Now, 
    $$W_h = \dfrac{W_s}{4}$$

    $$\dfrac{GMm}{(R+h)^2} = \dfrac{GMm}{4R^2}$$

    $$\dfrac{1}{R+h}=\dfrac{1}{2R}$$

    $$R+h=2R$$

    $$h=R$$
  • Question 4
    1 / -0
    Every planet revolves around the sun in a/an ______ orbit.
    Solution
    The first law of Kepler states that the orbit of a planet is an ellipse with the Sun at one of the two foci.

    Hence correct answer is option $$A $$ 
  • Question 5
    1 / -0
    The ratio of SI unit of G to its CGS unit is _______.
    Solution
    We know that SI unit of G $$=m^3/s^2kg=(100cm) ^3/s^2(1000g)=10^6cm^3/10^3gs^2=10^3cm^3/gs^2$$

    Also the CGS unit of G $$=cm^3/gs^2$$
    $$\Rightarrow \dfrac{SI}{CGS}=1000$$ 

    Hence correct answer is option $$B$$ 
  • Question 6
    1 / -0
    A body weighs $$72 N$$ on the surface of the earth. What is the gravitational force on it at a height equal to half the radius of the earth from the surface?
    Solution
    Hint:- Use the formula of gravitational acceleration to check weight of the body on certain height.

    Step-1 Note the given values 
    Let $$R_e$$ be the radius of earth 
    Given 
    height, $$h = \frac{R_e}2$$
    Acceleration due to gravity at the surface of earth=g

    Step -2 Calculate gravitational force on height h 
    Since h is comparable to $$R_e$$
    So, $$g_h=\dfrac{GM}{(R_e+h) ^2}$$ 
    Putting $$h=R_e/2$$,we get
    $$\Rightarrow g_h=\dfrac{4}{9}\times \dfrac{GM}{R_e^2}=\dfrac{4g}{9}$$

    Therefore weight at a height equal to half of the earth's radius $$ mg_h=\dfrac{4}{9}\times mg= \dfrac{4}9 \times {72 N}=32 N$$

    Hence correct answer is option $$D$$ 

  • Question 7
    1 / -0
    The figure given below shows a planet in elliptical orbit around the sun $$S$$. At what position will the kinetic energy of the planet be maximum?

    Solution
    Hint : Use angular momentum conservation 

    Step :1 Finding the point at which velocity is maximum.
    As there is no external torque on the system so angular momentum is conserved.
    L=mvr=constant; where m=mass of satellite,v=velocity of satellite, and r=distance of the satellite from Sun
    From here we can see that $$v \propto \frac1r$$
    V is maximum at the point where r is minimum 
    So velocity is maximum at point $$P_1$$ 

    Step 2: Finding point of maximum kinetic energy 
    As kinetic energy ,$$K =\dfrac{1}{2}mv^2$$
    Kinetic energy is maximum at the point where V is maximum 
    So kinetic energy is maximum at point $$P_1$$

    $$\textbf{Hence option A correct}$$
  • Question 8
    1 / -0
    At what height from the surface of the earth (in terms of the radius of earth) the acceleration due to gravity will be $$\dfrac {g}{2}?$$
    Solution
    We have, $${ g }_{ h }=\dfrac { g }{ { \left( 1+\dfrac { h }{ R }  \right)  }^{ 2 } } $$

    $${ g }_{ h }=\dfrac { g }{ 2 } $$

    $$\therefore \dfrac { g }{ 2 } =\dfrac { g }{ { \left( 1+\dfrac { h }{ R }  \right)  }^{ 2 } } $$

    $$\Rightarrow \dfrac { 1 }{ 2 } =\dfrac { 1 }{ { \left( 1+\dfrac { h }{ R }  \right)  }^{ 2 } } $$

      $${ \left( 1+\dfrac { h }{ R }  \right)  }^{ 2 }=2$$

       $$1+\dfrac { h }{ R } =\sqrt { 2 }$$

       $$\dfrac { h }{ R } =\sqrt { 2 } -1$$

       $$h=R\left( \sqrt { 2 } -1 \right) $$
  • Question 9
    1 / -0
    At what height from the surface of the earth (in terms of the radius of earth) the acceleration due to gravity will be $$\dfrac {4g}{9}?$$
    Solution
    We have, $${ g }_{ h }=\dfrac { g }{ { \left( 1+\cfrac { h }{ R }  \right)  }^{ 2 } } $$

    $${ g }_{ h }=\dfrac { 4g }{ 9 } $$

    $$\therefore \dfrac { 4g }{ 9 } =\dfrac { g }{ { \left( 1+\cfrac { h }{ R }  \right)  }^{ 2 } } \quad \Rightarrow 2\left( 1+\cfrac { h }{ R }  \right) =3$$

                                     $$\Rightarrow 1+\cfrac { h }{ R } =\cfrac { 3 }{ 2 } $$

                                          $$\cfrac { h }{ R } =\cfrac { 3 }{ 2 } -1=\cfrac { 1 }{ 2 } $$

                                      or, $$h=\cfrac { R }{ 2 } $$
  • Question 10
    1 / -0
    A body weighs $$100\ N$$ at a distance $$\dfrac {R}{4}$$ from centre of earth. Find its weight at height of $$9\ R$$ from the surface of earth (R - Radius of earth)
    Solution
    distance $$=\dfrac { R }{ 4 } $$
    $$\therefore $$ Depth $$=d=\dfrac { 3R }{ 4 } $$
    $${ g }_{ a }=g\left( 1-\dfrac { d }{ R }  \right) $$
         $$=g\left( 1-\dfrac { 3 }{ 4 }  \right)$$
         $$=\dfrac { g }{ 4 } $$
    $$\therefore \quad 100N=\dfrac { mg }{ 4 } $$
    or $$mg=400N$$
    Also, $${ g }_{ n }=\dfrac { g }{ { \left( 1+\dfrac { h }{ R }  \right)  }^{ 2 } } $$
    Distance $$=9R$$
    $$\therefore $$ Height, $$h=8R$$
    $${ g }_{ h }=\dfrac { g }{ { \left( 1+\dfrac { 8R }{ R }  \right)  }^{ 2 } } \Rightarrow { g }_{ h }=\dfrac { g }{ { 9 }^{ 2 } } $$
                                  $${ g }_{ h }=\dfrac { g }{ 81 } $$

    or $$mg=81m{ g }_{ h }$$
    $$\Rightarrow 400=81{ g }_{ h }m$$
    or $$m{ g }_{ h }=\dfrac { 400 }{ 81 } \approx 4N$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now