Given that,
Acceleration $$a=2.45\,m/{{s}^{2}}$$
Mass of earth $$M=6\times {{10}^{24}}\,kg$$
Radius of earth $$R=6\times {{10}^{6}}\,m$$
Gravitational constant $$G=6.67\times
{{10}^{-11}}\,N{{m}^{2}}/kg$$
Now centripetal acceleration is
$$ {{a}_{c}}=\dfrac{{{v}^{2}}}{R}
$$
$$ {{a}_{c}}=\dfrac{{{\left(
\sqrt{\dfrac{GM}{R}} \right)}^{2}}}{R} $$
$$ {{a}_{c}}=\dfrac{GM}{{{R}^{2}}}
$$
$$ {{a}_{c}}=\dfrac{GM}{{{\left(
R+h \right)}^{2}}} $$
Now, put the values
$$ 2.45=\dfrac{6.67\times
{{10}^{-11}}\times 6\times {{10}^{24}}}{{{\left( 6\times {{10}^{6}}+h
\right)}^{2}}} $$
$$ {{\left( 6\times
{{10}^{6}}+h \right)}^{2}}=\dfrac{6.67\times {{10}^{-11}}\times 6\times
{{10}^{24}}}{2.45} $$
$$ {{\left( 6\times
{{10}^{6}}+h \right)}^{2}}=\dfrac{40.02\times {{10}^{13}}}{2.45} $$
$$ {{\left( 6\times
{{10}^{6}}+h \right)}^{2}}=1.6334\times {{10}^{14}} $$
$$ 6\times
{{10}^{6}}+h=\sqrt{1.6334\times {{10}^{14}}} $$
$$ h=1.278\times
{{10}^{7}}-6\times {{10}^{6}} $$
$$ h=\left( 12.78-6
\right)\times {{10}^{6}} $$
$$ h=6.78\times
{{10}^{6}} $$
$$ h=6.8\times
{{10}^{6}}\,m $$
So, $$h\cong R$$
Hence, the height of spaceship is $$R$$