Self Studies

Gravitation Test - 77

Result Self Studies

Gravitation Test - 77
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Use the assumptions of the previous question. An object weighed by a spring balance at the equator gives the same reading as a reading taken at a depth $$d$$ below the earth's surface at a pole $$(d < < R)$$. The value of $$d$$ is
    Solution

  • Question 2
    1 / -0
    If $$g$$ on the surface of the earth is $$9.8/ m{s}^{-2}$$, its value at a depth of $$3200\ km$$ (Radius of the earth=$$6400\ km$$) is
    Solution
    $$g_d=g\left(1-\dfrac d{R}\right)$$
    $$\implies 9.8\left(1-\dfrac{3200\times 10^{3}}{6400\times 10^{3}}\right)$$
    $$4.9m/s^2$$
  • Question 3
    1 / -0
    A person on the surface of the moon:
    Solution

     The value of $${g_e}$$ on the surface of moon will be,

    $$g' = g{\left( {1 + \frac{h}{R}} \right)^{ - 2}}$$

    After putting the values of $$g,h,R$$

    we get the value of $${g'}$$ as,

    $${g'} = .0026\,{\rm{m}}/{{\rm{s}}^2}$$

    This is almost negligible and can’t be felt on the person standing on moon.

    Thus, a person on the surface of the moon does not feel the effect of earth's gravity because the gravity due to moon is much stronger.

     

  • Question 4
    1 / -0
    Assume that the earth moves around the sun in an elliptic orbit with sun at one of the foci. If the minimum and the maximum distance of the earth from the sun be $$\alpha \,{\text{and}}\,\beta $$ respectively, then the eccentricity of the elliptical orbit is
  • Question 5
    1 / -0
    A body is released from a point distance r from the center of earth. If R is the earth r > R, then the velocity of the body at the time of striking the earth will be:
    Solution

    $${ \left( PE \right)  }_{ height }={ \left( PE \right)  }_{ surface }+{ \left( KE \right)  }_{ surface }\\ -\dfrac { GMm }{ r } =-\dfrac { GMm }{ R } +\dfrac { 1 }{ 2 } m{ v }^{ 2 }\\ \therefore \dfrac { 1 }{ 2 } { v }^{ 2 }=GM\left( \dfrac { 1 }{ R } -\dfrac { 1 }{ r }  \right) \\ \Rightarrow v=\sqrt { \dfrac { 2GM }{ R } \left( \dfrac { r-R }{ r }  \right)  } \dfrac { R }{ R } \\ \Rightarrow \sqrt { \dfrac { 2GMR }{ R } \left( \dfrac { r-R }{ r }  \right)  } \\ \Rightarrow \sqrt { \dfrac { 2gR(r-R) }{ r }  } $$

  • Question 6
    1 / -0
    The depth at which the value of $$g$$ becomes $$25$$% of that at the surface of the earth is (in Km)
    Solution
    Given that $$g_d=0.25g$$
    We have, $$g_d=g\left(1-\dfrac d{R}\right)$$
    $$\therefore 0.25g=g\left(1-\dfrac d{R}\right)$$
    $$\implies d=0.75R$$
    $$\implies 0.75\times 6400$$
    $$\implies 4800km$$
  • Question 7
    1 / -0
    For escape of oxygen molecules from the earth's surface, its temperature should be:
    Solution
    rms velocity of gas molecule is given by,
    $$V_{rms}=\sqrt{\dfrac{3kT}{M}}=11.2\times 10^3$$
    $$\therefore T=\dfrac{(11.2\times 10^3)^2\times}{3k}$$
    $$\implies \dfrac{(11.2\times 10^3)^2(2.76\times 10^{-26})}{3\times 1.38\times 10^{-23}}$$
    $$\implies 8.3\times 10^{4}k$$
  • Question 8
    1 / -0
    A particle hanging from a massless spring stretches it by $$2cm$$ at the eath's surface. How much will the same particle stretch the spring at a height of $$2624Km$$ from the surface of the earth? (Radius of the earth$$=6400Km$$)
    Solution
    $$\triangle l\alpha \quad F\\ \Rightarrow \triangle l\alpha \quad mg\\ \Rightarrow \triangle l\alpha \quad g\\ \therefore \dfrac { \triangle { l }_{ 2 } }{ \triangle { l }_{ 1 } } =\dfrac { { g }_{ 2 } }{ { g }_{ 1 } } \\ \Rightarrow \dfrac { \triangle { l }_{ 2 } }{ 2 } =\dfrac { \dfrac { GM }{ { \left( 6400+2624 \right)  }^{ 2 } }  }{ \dfrac { GM }{ { \left( 6400 \right)  }^{ 2 } }  } \\ \Rightarrow \triangle { l }_{ 2 }=1$$
    $$\therefore \triangle { l }_{ 2 }$$ will be $$1cm$$.
  • Question 9
    1 / -0
    The period of rotaion of the earth so as to make any object weightless on its equator is
    Solution

  • Question 10
    1 / -0
    Assuming the earth as a sphere of uniform density, the acceleration due to gravity half way towards the centre of the earth will be if it weighed 250N on the surface?
    Solution
    Suppose $${ g }_{ 1 }{ g }_{ a }$$ be the acceleration due to gravity on earth's surface and at a depth $$d$$ from surface respectively. Also suppose $$w$$ and $${ w }_{ d }$$ be weight of body on earth's surface at a depth $$d$$.
    $$w=mg=250N\quad \longrightarrow \left( 1 \right) $$
    $${ w }_{ d }={ mg }_{ d }\quad \longrightarrow \left( 2 \right) $$
    We know that $${ g }_{ d }=g\left( 1-\dfrac { d }{ R }  \right) \quad \longrightarrow \left( 3 \right) $$
    Here $${ d }_{ 2 }=\dfrac { R }{ 2 } $$   $$R=$$ radius of earth
    From equation $$(3)$$ and $$(4)$$
    $${ g }_{ d }=g\left( 1-\dfrac { R/2 }{ R }  \right) $$
         $$=g\left( 1-1/2 \right) =g\times \dfrac { 1 }{ 2 } =\dfrac { g }{ 2 } \quad \longrightarrow \left( 5 \right) $$
    $${ w }_{ d }={ mg }_{ d }=\dfrac { mg }{ 2 } =\dfrac { 1 }{ 2 } mg=\dfrac { 1 }{ 2 } w=\dfrac { 1 }{ 2 } \times 250=125N$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now