Self Studies

Mechanical Properties of Solids Test - 21

Result Self Studies

Mechanical Properties of Solids Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two exactly similar wires of steel (y$$=$$20 x 10$$^{11}$$dyne/cm$$^{2}$$) and copper (y $$=$$ 12 x 10$$^{11}$$ dyne/cm$$^{2}$$)are stretched by equal forces. If the total elongation is 1cm, elongation of copper wire is
    Solution
    $$ \triangle  l = \dfrac{F l}{A Y} $$
    $$ \triangle  l_{s} = \dfrac{F l}{A Y_{s}} - 1$$     (different cases have different subscripts)
    $$ \triangle  l_{c} = \dfrac{F l}{A Y_{c}} - 2$$
    Dividing  1  and  2
    $$\dfrac{\triangle l_{s}}{\triangle l_{c}} = \dfrac{Y_{c}}{Y_{s}} = \dfrac{12 \times 10^{11}}{20 \times 10^{11}} = \dfrac{3}{5}$$
    $$ 1 cm = \triangle  l_{s} + \triangle  l_{c}$$
    $$ 1 cm = \dfrac{3}{5} \triangle  l_{c} + \triangle  l_{c}$$
    $$ 1 cm = \dfrac{8}{5} \triangle  l_{c}$$
    $$ So,  \triangle  l_{c} = \dfrac{5}{8}cm$$
  • Question 2
    1 / -0
    The radii and Young's modulus of two uniform wires $$A$$ & $$B$$ are in the ratio $$2:\ 1$$ and $$1:\ 2$$ respectively. Both the wires are subjected to the same longitudinal force. If increase in the length of wire $$A$$ is $$1\%$$ . Then the percentage increase in length of wire $$B$$ is :
    Solution
    $$ Y = \dfrac{F/A}{\triangle  l/l}$$
    $$ \triangle  l = \dfrac{F  l}{\pi r^{2}Y}$$
    $$ \triangle  l_{A} = \dfrac{F  l}{\pi r_{A}^{2}Y_{A}} .............(1)$$

    $$ \triangle  l_{B} = \dfrac{F  l}{\pi r_{B}^{2}Y_{B}} .............(2)$$

    Dividing  1  by  2

    $$ \dfrac{\triangle  l_{A}}{\triangle  l_{B}} =\dfrac{r_{B}^{2}Y_{B}}{r_{A}^{2}Y_{A}} = (\dfrac{r_{B}}{r_{A}})^{2} (\dfrac{Y_{B}}{Y_{A}}) = (\dfrac{1}{2})^{2} (\dfrac{2}{1}) = \dfrac{1}{2}$$
    $$ \triangle   l_{B} = 2\triangle   l_{A} = 2 \times 1$$ %
    $$ = 2$$ %

  • Question 3
    1 / -0
    A load of $$4.0\ kg$$ is suspended from a ceiling through a steel wire of length $$20\ m$$ and radius $$2.0\ mm$$. It is found that the length of the wire increases by $$0.031\ mm$$ as equilibrium is achieved. If $$g=3.1\  \pi\ ms^{-2}$$, the value of young's modulus in $$Nm^{-2}$$ is
    Solution
    For  equilibrium
    Weight = Tension
    $$mg = T$$
    $$ \therefore T = 4 \times 3.1 \pi $$$$ = 12.4\pi  N$$  (as can be inferred from the question)
    $$ Y = \dfrac{T/A}{\triangle  l/l}$$
    $$ = \dfrac{12.4  \pi / \pi  (\dfrac{2}{1000})^{2}}{\dfrac{0.031}{1000}/20}$$
    $$ = \dfrac{12.4 \times 20 \times 1000 \times (1000)^{2}}{4 \times 0.031}$$
    $$=2 \times 10^{12} N/m^{2}$$
  • Question 4
    1 / -0
    A uniform wire of length $$4m$$ and area of cross section $$2mm$$$$^{2}$$ is subjected to longitudinal force produced an elongation of $$1mm$$.If Y$$=$$0.2 x 10$$^{11}$$ NM$$^{-2}$$, elastic potential energy stored in the body is
    Solution
    $$\text{ Work  done}  =  \int _{0}^{1mm} \dfrac{AY}{L}  xdx$$                       (using standard result $$Y=\dfrac{(\dfrac{F}{A})}{(\dfrac{\text{change in length}}{\text{actual length}})}$$)

    $$= \dfrac{AY}{2L} (\dfrac{1}{1000})^{2}$$

    $$ = \dfrac{2 \times 10^{-6}\times 0.2\times 10^{11}}{2 \times 4} \times 10^{-6}$$

    $$ = 0.005 J$$
  • Question 5
    1 / -0
    Two wires of equal cross section, but one made up of steel and the other copper, are joined end to end. When the combination is kept under tension, the elongations in the two wires are found to be equal. If $$Y_{steel} =$$ 2.0 x $$10^{11} Nm^{-2}$$ and  $$Y_{copper} =$$ 1.1 x 10$$^{11} Nm^{-2}$$, the ratio of the lengths of the two wires is :
    Solution
    $$ Y = \dfrac{F/A}{\triangle  l/l}$$   (standard result)
    $$ \triangle  l = \dfrac{F  l}{A  Y}$$
    $$\triangle  l_{S} = \dfrac{F  L_{s}} {A  Y_{s}}$$    (for different cases different subscripts are used)
    $$ \triangle  l_{c} = \dfrac{F  l_{c}}{A Y_{c}}$$
    $$ By\  problem   \triangle  l_{S} = \triangle  l_{c}$$
    $$ \dfrac{F  l_{s}}{A  Y_{s}} = \dfrac{F  l_{c}}{A Y_{c}}$$
    $$ \dfrac {l_{S}} {l_{c}} = \dfrac {Y_{s}} {Y_{c}} = \dfrac {2 \times 10^{11}} {1.1 \times 10^{11}} = \dfrac{20}{11}$$
  • Question 6
    1 / -0
    A load of 1kg weight is attached to one end of a steel wire of cross sectional area 3mm$$^{2}$$ and Youngs modulus 10$$^{11}$$ N/m$$^{2}$$ . The other end is suspended vertically from a hook on a wall, then the load is pulled horizontally and released.When the load passes through its lowest position the fractional change in length is:  (g$$=$$10m/ s$$^{2}$$ )                   
    Solution
    $$ Y = \dfrac{F/A}{\triangle l/l}$$

    $$ \dfrac{\triangle  l}{l} = \dfrac{F}{YA}$$

    $$ = \dfrac{1 \times 10}{10^{11} \times 3 \times 10^{-6}}$$

    $$ = \ 0.3 \times 10^{-4}$$
  • Question 7
    1 / -0
    Two wires A and B of the same dimensions are under loads of $$4$$ and $$5.5 kg$$ respectively. The ratio of Young's modulii of the materials of the wires for the same elongation is:
    Solution
    $$ Y = \dfrac{F/A}{\triangle  l/l}$$
    $$ Y_{A} = \dfrac{F_A/A}{\triangle l/l}   ........................... 1$$
    $$ Y_{B} = \dfrac{F_B/A}{\triangle l/l}   ........................... 2$$
    Dividing 1 and 2
    $$ \dfrac{Y_{A}}{Y_{B}} = \dfrac{F_{A}}{F_{B}} = \dfrac{4}{5.5} = \dfrac{8}{11}$$
  • Question 8
    1 / -0
    A wire is subjected to a longitudinal strain of $$0.05.$$ If its material has a Poisson's ratio $$0.25$$, the lateral strain experienced by it is                   
    Solution
    $$\epsilon x=0.05$$  (given)
    $$\sigma =0.25$$
    $$\dfrac{\epsilon y}{0.05}=-0.25$$ (standard result)
    $$=-0.0125$$

  • Question 9
    1 / -0
    A metallic rod undergoes a strain of $$0.05$$%. The energy stored per unit volume is ($$Y$$ = $$2 \times 10$$$$^{11}$$Nm$$^{-2}$$):
    Solution
    $$ Stress =  Y  \times strain $$

    $$ Potential\  energy  = \dfrac{1}{2} \times stress \times  strain  \times  volume$$

    $$\dfrac{Potential\  energy}{volume} = \dfrac{1}{2} \times  stress \times  strain$$

    $$ = \dfrac{1}{2} \times Y  strain \times  strain$$

    $$ = \dfrac{1}{2} \times 2\times 10^{11}\times (\dfrac{0.05}{100})^{2}$$

    $$ = 2.5 \times 10^{4} J/m^{3}$$
  • Question 10
    1 / -0
    A steel wire of length $$4m$$ is stretched by a force of $$100N$$. The work done to increase the length of the wire by $$2mm$$ is
    Solution
    $$\text{ Work  done}  = \dfrac{AY}{2L}  l^{2}$$      (using standard result $$Y=\dfrac{(\dfrac{F}{A})}{(\dfrac{\text{change in length}}{\text{actual length}})}$$)

    $$ = \dfrac{F  l}{2}       (\because  F = \dfrac{AYl}{L})$$

    $$ = \dfrac{100 \times 2}{2 \times 1000}$$

    $$= 0.1 J$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now