Self Studies

Mechanical Properties of Solids Test - 22

Result Self Studies

Mechanical Properties of Solids Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    When a certain force is applied on a string it extends by $$0.01cm$$. When the same force is applied on another string of same material, twice the length and double the diameter, then the extension in second string is
    Solution
    $$ \triangle  l = \dfrac{F  l}{\pi  (\dfrac{d}{2})^{2}Y}$$
    $$ 0.01 = \dfrac{F  l}{\pi  (\dfrac{d}{2})^{2}Y} $$
    $$ \triangle  l_{1} = \dfrac{F  2l}{\pi 4 (\dfrac{d}{2})^{2}Y}$$
    $$ = \dfrac{1}{2} \dfrac{F  l}{\pi  (\dfrac{d}{2})^{2}Y} $$  (also take the ratio in the next step)
    $$\dfrac{1}{2} (0.01)$$
    $$ = 0.005cm $$
  • Question 2
    1 / -0
    When load is applied to a wire, the extension is $$3mm.$$ The extension in the wire of same material and length but half the radius extended by the same load is :
    Solution
    $$Y = \dfrac{F  l}{A (\triangle  l )}$$

    $$ \triangle l = \dfrac{F  l}{Y  \pi R^{2}}$$

    $$So, \triangle l \alpha  \dfrac{1}{R^{2}}$$

    $$\dfrac{\triangle l_{1}}{\triangle l_{2}} = \dfrac{r_{2}^{2}}{r_{1}^{2}} = (\dfrac{1}{2})^{2} = \dfrac{1}{4}      (\because  \dfrac{r_{1}}{r_{2}} = 2)$$

    $$ 4\triangle l_{1} = \triangle l_{2}$$

    $$So, \triangle l_{2} = 4(3)$$

    $$ = 12mm$$
  • Question 3
    1 / -0
    A steel wire is 1m long and 1$$mm^2$$ in the area of cross-section. If it takes $$200N$$ to stretch the wire by $$1mm$$, the force that will be required to stretch the wire of the same material and cross-sectional area from a length of $$10m$$ to $$1002 cm$$
    Solution
    $$ Y = \dfrac{F  l}{A  \triangle  l}$$
    $$ Y = \dfrac{200 \times  1}{10^{-6}\times  10^{-3}}$$
    $$ Y = 2\times 10^{11}$$
    $$ \triangle l = 1002 - 1000 = 2cm , l = 10m$$
    $$F = \dfrac{YA \triangle l}{l}$$
    $$ =\dfrac{2 \times 10^{11}\times 10^{-6} \times 2 \times 10^{-2}}{10}$$
    $$ = 400N$$
  • Question 4
    1 / -0
    When a tension $$F$$ is applied, the elongation produced in uniform wire of length $$L$$, radius $$r$$ is $$e$$. When tension $$2F$$ is applied, the elongation produced in another uniform wire of length $$2L$$ and radius $$2r$$ made of same material is:
    Solution
    $$ Y = \dfrac{F / \pi r^{2}}{\triangle l/l}$$

    $$ \triangle l = \dfrac{F  l}{\pi r^{2} Y}$$

    $$ E = \dfrac{F  l}{\pi r^{2} Y}  - ------1$$

    $$ \triangle l = \dfrac{2 F 2l}{\pi 4 r^{2}Y}$$

    $$ \triangle l = \dfrac{F  l}{\pi r^{2}Y}= e$$   ---------- (By  1)

    =>  elongation  is  none  wire  is same as $$e$$
  • Question 5
    1 / -0
    When a uniform wire of radius r is stretched by a $$2 kg$$ weight, the increase in its length is $$2.00 mm$$. If the radius of the wire is $$r/2$$ and other conditions remain in the same, increase in its length is
    Solution
    $$ Y = \dfrac{F / A}{\triangle  l/l}$$        (standard result)
    $$ \triangle  l = \dfrac{F  l}{\pi  r^{2} Y}$$
    $$\dfrac{2}{1000} = \dfrac{F  l}{\pi (\dfrac{r}{2})^{2}Y}$$
    $$\triangle  l_{1} = \dfrac{F  l}{\pi (\dfrac{r}{2})^{2}Y}$$
    $$= \dfrac { F l }{ \pi { r }^{ 2 }Y } $$
    $$ = 4(\dfrac{2}{1000})$$
    $$ = \dfrac{8}{1000} m $$
    $$ = 8 mm$$
  • Question 6
    1 / -0
    The elongation of a steel wire stretched by a force is '$$e$$'. If a wire of the same material of double the length and half the diameter is subjected to double the force, its elongation will be                         
    Solution
    $$ Y = \dfrac{F / \pi   (d/2)^{2}}{\triangle  l/l}$$

    $$ \triangle  l = \dfrac{F  l}{\pi (\dfrac{d}{2})^{2}Y}$$

    Now,  according  to  problem

    $$ e = \dfrac{F  l}{\pi (\dfrac{d}{2})^{2}Y} $$

    $$ Y = \dfrac{F /A}{\triangle  l_{1}/l }$$

    $$\triangle  l_{1} = \dfrac{F  l}{Y  A}$$

    $$ = \dfrac{2F  2l}{Y  \pi  (\dfrac{d}{2})^{2} \dfrac{1}{4}}$$

    $$ = 16 \dfrac{F  l}{Y  \pi (\dfrac{d}{2})^{2}}$$

    $$ =16 e$$

    So,  new  elongation  is  16e
  • Question 7
    1 / -0
    What percent of length of a wire will increase by applying a stress of $$1 kg$$. wt/mm$$^{2}$$ on it.   
    [Y$$=$$1x10$$^{11}$$Nm$$^{-2}$$ and $$1 kg wt$$ $$=$$ 9.8N]
    Solution
    $$ Y = \dfrac{Stress}{Strain}$$

    $$ Strain = \dfrac{Stress}{Y}$$

    $$ = \dfrac{9.8 \times 10^{6}}{1 \times 10^{11}}$$

    $$ = 9.8 \times 10^{-3}$$ %

    $$ = 0.0098$$ %

    So, change in length is $$0.0098$$%
  • Question 8
    1 / -0
    A metallic ring of radius 'r', cross sectional area 'A' is fitted into a wooden circular disk of radius 'R' (R > r). If the Young's modulus of the material of the ring is 'Y', the force with which the metal ring expands is :
    Solution
    $$ Y = \dfrac{F/A}{\triangle l/l}$$         (standard result)

    $$ F = \dfrac{Y \triangle l  A}{l}$$

    $$ = \dfrac{Y (R-r) A}{r}             (\because  \triangle  l = R-r)$$
  • Question 9
    1 / -0
    Four wires P,Q,R and S of same materials have diameters and stretching forces as shown below. Arrange their strains in the decreasing order.
    WireDiameterStretching force
    P2 mm10 N
    Q1 mm20 N
    R4 mm30 N
    S3 mm40 N
    Solution
    $$ Y = \dfrac{Stress}{Strain}$$
    $$ Strain = \dfrac{Stress}{Y}$$
    $$ = \dfrac{F/A}{Y}$$
    $$ Strain (P) = \dfrac{10/\pi (\dfrac{2}{2})^{2}}{Y} = \dfrac{10}{\pi Y} N/mm^{2}$$
    $$Strain (Q) = \dfrac{20/\pi (\dfrac{1}{2})^{2}}{Y} = \dfrac{80}{\pi Y} N/mm^{2}$$
    $$ Strain (R) = \dfrac{30/\pi (\dfrac{4}{2})^{2}}{Y} = \dfrac{30}{4\pi Y} N/mm^{2}$$
    $$ Strain (S) = \dfrac{40/\pi (\dfrac{3}{2})^{2}}{Y} = \dfrac{160}{9\pi Y} N/mm^{2}$$
    Strain  in order  of  decreasing
    $$Q>S>P>R$$
  • Question 10
    1 / -0
    An aluminium wire and steel wire of the same length and cross section are joined end to end.The composite wire is hung from a rigid support and a load is suspended from the free end. The young's modulus of steel is $$20/7$$ times the aluminium. The ratio of increase of length of steel and aluminium is 
    Solution
    $$ Y = \dfrac{F  l}{A  \triangle l}$$

    $$ Y \alpha  \dfrac{1}{\triangle l}$$
     Now take the ratio,
    $$\dfrac{Y_{1}}{Y_{2}} = \dfrac{\triangle l_{2}}{\triangle l_{1}}$$

    $$\therefore  \dfrac{\triangle l_{2}}{\triangle  l_{1}} = \dfrac{Y_{1}}{Y_{2}} = \dfrac{20}{7}$$

    $$ or  \dfrac{\triangle l_{1}}{\triangle l_{2}} = \dfrac{7}{20}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now