Self Studies

Mechanical Properties of Solids Test - 24

Result Self Studies

Mechanical Properties of Solids Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A ball falling in a lake to a depth $$200m$$ shows a decrease of $$0.1$$% in its volume at the bottom. the bulk modulus of the ball is
    Solution
    $$B=\dfrac{\rho gh}{\Delta v/v}$$  (standard result)

    $$=\dfrac{1000\times 200\times 9.8}{\dfrac{0.1}{100}}$$

    $$=19.6\times 10^{8}N/m^{2}$$
  • Question 2
    1 / -0
    The Poisson's ratio of a material is 0.4. If a force is applied to a wire of this material, there is a decrease of cross-sectional area by 2%. The percentage increase in its length is :  
    Solution
    Poisson's ratio, $$0.4=\cfrac{\Delta d/d}{\Delta l/l}\Rightarrow\cfrac{\Delta l}{l}=\cfrac{\Delta d/d}{0.4}$$-------------(1)
    $$A=\pi r^2=\cfrac{\pi d^2}{4}$$
    Taking log both sides:
    $$ \log A=\log {(\frac{\pi}{4})}+2\log {d}$$
    Taking relative change both the sides: 
    $$ \cfrac{\Delta A}{A}=2\cfrac{\Delta d}{d}\\ \cfrac{\Delta d}{d}=\cfrac{1}{2}\cfrac{\Delta A}{A}=\dfrac{1}{2}\times 2\%=1\%$$------------------------------(1)
    From equation (1) and (2), the percentage increase length can be given as: 
     $$ \cfrac{\Delta l}{l}=\cfrac{1\%}{0.4}=2.5\%$$
    Option B is correct
  • Question 3
    1 / -0
    A stress $$10^{7}$$ Pa produces a strain of 4 x 10$$^{-3}$$. The energy stored per unit volume of the body (in J.m$$^{-3}$$) is
    Solution
    $$energy=\dfrac{1}{2}\times stress\times strain\times volume$$

    $$\dfrac{energy}{volume}=\dfrac{1}{2}\times stress\times strain$$

    $$=\dfrac{1}{2}\times 10^{7}\times 4\times 10^{-3}$$

    $$=2\times 10^{4} J/m^{3}$$

  • Question 4
    1 / -0
    On taking a solid rubber ball from the surface to the bottom of a lake 200m deep, the reduction in volume is found to be 0.5%. If the density of water is 10$$^{3}$$ kgm$$^{-3}$$ and g$$=$$10 ms$$^{-2}$$, find the bulk modulus of rubber.
    Solution
    $$B=\dfrac{\rho g\Delta h}{\Delta v/v}$$

    $$=\dfrac{1000\times 10\times 200}{0.5/100}$$

    $$=4\times 10^{8}pa$$
  • Question 5
    1 / -0
    A rubber cord of length $$40cm$$ and area of cross section 4 x 10$$^{-6}$$ m$$^{2}$$ is extended by 10cm. If the energy gained is $$20 joule$$, young's modulus of rubber is
    Solution
    $$Energy =\dfrac{AY}{2L}l^{2}$$

    $$20=\dfrac{4\times 10^{-6}\times Y\times \left ( \dfrac{10}{100} \right )^{2}}{2\times \dfrac{40}{100}}$$

    $$Y=\dfrac{20\times 2\times 40}{4\times 10^{-6}\times \left ( \dfrac{10}{100} \right )^{2}\times 100}$$

    $$=4\times 10^{8}N/m^{2}$$
  • Question 6
    1 / -0
    A steel wire of mass $$3.16 Kg$$ is stretched to a tensile strain of 1 x 10$$^{-3}$$. What is the elastic deformation energy if density $$\rho  =7.9 g/cc$$ and Y$$=$$2x10$$^{11}$$ N/m$$^{2}$$?
    Solution
    $$Volume=\dfrac{mass}{\rho }$$

    $$Y=\dfrac{stress}{strain}$$

    $$stress=Y\times strain$$

    $$energy=\dfrac{1}{2}\times stress\times strain\times volume$$

    $$=\dfrac{1}{2}\times Y\times strain\times strain\times \dfrac{mass}{\rho }$$

    $$=\dfrac{1}{2}\times 2\times 10^{11}\times 1\times 10^{-3}\times 1\times 10^{-3}\times \dfrac{3.16}{7.9\times 1000}$$

    $$=0.04KJ.$$

  • Question 7
    1 / -0
    If the work done in stretching a wire by 1mm is 2 J, the work necessary for stretching another wire of same material but with double radius of cross section and half the length by 1mm is : (in joules)             
    Solution
    Work done $$=\dfrac{AY}{2L}l^{2}$$$$=\dfrac{\pi r^{2}Yl^{2}}{2L}$$

    Work done $$\propto \dfrac{r^{2}}{L}$$

    $$\dfrac{w_{1}}{w_{2}}=\dfrac{r{_{1}}^{2}}{L_{1}}\times \dfrac{1/2L_{1}}{(2r_{1})^{2}}$$

    $$\dfrac{w_{1}}{w_{2}}=\dfrac{1}{8}$$

    $$w_{2}=8w_{1}$$
    $$=8(2)$$
    $$=16J$$
  • Question 8
    1 / -0
    When a wire of length 10m is subjected to a force of $$100 N$$ along its length , the lateral strain produced is $$0.01$$ x $$10$$$$^{-3}$$. The Poisson's ratio was found to be $$0.4$$. If the area of cross-section of wire is $$0.025m$$$$^{2}$$ , its Young's modulus is :         
    Solution
    $$\text{Poisson's ratio} =\dfrac{\Delta d/d}{\Delta d_0/d_0}$$

    $$\dfrac{\Delta l}{l}=\dfrac{\Delta d/d}{0.4}$$

    $$=\dfrac{0.01\times 10^{3}}{0.4}$$

    $$Y=\dfrac{F/A}{\Delta l/l}$$

    $$=\dfrac{100/0.025}{0.01\times 10^{3}/0.4}$$

    $$=\dfrac{100\times 0.4}{0.025\times 0.01\times 10^{3}}$$

    $$=1.6\times 10^{8}N/m^{2}$$
  • Question 9
    1 / -0
    The increase in length of a wire on stretching is $$0.025$$%. If its Poisson's ratio is $$0.4$$, then the percentage decrease in the diameter is :  
    Solution
    $$\text{Poisson's ratio} =\dfrac{\Delta d/d}{\Delta l/l}$$

    $$0.4=\dfrac{\Delta d/d}{0.025/100}$$

    $$\dfrac{0.4\times 0.025}{100}=\Delta d/d$$

    $$\Delta d/d=0.01$$ %
  • Question 10
    1 / -0
    When a wire is subjected to a force along its length, its length increases by $$0.4$$% and its radius decreases by $$0.2$$ %. Then the Poisons ratio of the material of the wire is
    Solution
    Poison's ratio $$=\dfrac{\Delta d/d}{\Delta r/r}$$

    $$=\dfrac{0.2/100}{0.4/100}$$

    $$=\dfrac{1}{2}=0.5$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now