Self Studies

Mechanical Properties of Solids Test - 26

Result Self Studies

Mechanical Properties of Solids Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A wire suspended from one end carries a sphere at its other end. The elongation in the wire reduces from $$2 mm$$ to $$1.6 mm$$ on completely immersing the sphere in water. The density of the material of the sphere is
    Solution
    $$ Y = \dfrac{F/A}{\triangle L/L}$$
    $$ Y = \dfrac{F_{1}/A}{2/L} = \dfrac{F_{2}/A}{1.6/L}$$
    $$\dfrac { 4  }{ 5 } F_{1} = F_{2}$$
    Bouyant  force  $$= F_{1} -F_{2} = \dfrac{F_{1}}{5}$$
    $$ F_{1} = \rho_{s} V_{s} g$$
    Bouyant  force  $$=  \rho_{w} V_{s} g = \dfrac{F_{1}}{5}$$ 
    $$ \Rightarrow  5\rho_{w} V_{s} g = \rho_{s} V_{s} g$$
    $$ \Rightarrow \rho_{s} = 5\rho_{w}$$
    $$ \Rightarrow \rho_{s} = 5000 kg / m^{3}   (\because \rho_{w} = 1000  kg/m^{3})$$
    So,  density  of  material  is  $$5000 kg / m^{3}$$
  • Question 2
    1 / -0
    If the force constant of a wire is $$K$$, the work done in increasing the length $$l$$ of the wire by $$l$$ is
    Solution
    $$ Work  done = \int _{0}^{l} F dx$$
    $$\displaystyle = \int _{0}^{l} K x d x  (\because  force (f) = Kx)$$
    where $$x$$ is elongation in the wire
    $$ = \dfrac{1}{2} Kx^{2} |_{0}^{l}$$
    $$ = \dfrac{1}{2} Kl^{2} - \frac{1}{2} k(0)^{2}$$
    $$ =\dfrac{1}{2} Kl^{2}$$
  • Question 3
    1 / -0
    A 8m long string of rubber, having density 1.5 x 10$$^{3}$$ kg/m$$^{3}$$ and young's modulus $$5\times10^{6}$$ N/m$$^{2}$$ is suspended from the ceiling of a room. The increase in its length due to its own weight will be (g$$=$$10m/s$$^{2}$$)
    Solution

    Mass of small dx element, $$\displaystyle dm = \lambda Adx$$

    Also $$\displaystyle \frac{stress}{strain}=Y$$

    => $$\displaystyle \frac{F/A}{\frac{\triangle L}{L}} = Y$$

    where $$F \rightarrow (x)(A)\lambda .g$$ , gravitational force experienced by the part below to $$dm$$ mass  

    Strain on $$dm$$ mass = $$\dfrac{d(\triangle L)}{dx}$$

    => $$\displaystyle \frac{x\, A\lambda g}{A\lambda}=\frac{d(\triangle L)}{dx}$$

    $$\displaystyle \Rightarrow\int_{o}^{\triangle L} d(\triangle L) = \frac{\lambda g}{y}\int_{o}^{L}xdx$$

    =>$$\displaystyle \triangle L = \frac{\lambda gL^2}{2y}=9.6\times 10^{-2}$$

  • Question 4
    1 / -0
    Two wires of different materials each of length $$l$$ and cross sectional area ‘$$A$$’ are joined in series to form a composite wire. If their Young’s modulii are $$Y$$ and $$2Y$$, the total elongation produced by applying a force $$F$$ to stretch the composite wire.
    Solution
    Applying  a  force  F to  stretch  is  applied  on  both  wires  simultaneously  so  we  can  directly  add  the  elongation  of  each  wire  with  force  F,  so,
    $$ Y = \dfrac{F/A}{\triangle  L_{1} / L }$$   for  wire  with  youngs  modulus   $$Y$$
    $$2Y = \dfrac{F/A}{\triangle  L_{2} / L } $$  for  wire  with  youngs  modulus  $$2Y$$
    $$ \triangle L_{1} = \dfrac{F  L}{Y  A }$$
    $$ \triangle L_{2} = \dfrac{F  L}{2YA}$$
    $$\triangle L_{1} + \triangle  L_{2} = \dfrac{F L}{Y  A} + \dfrac{F  L}{2YA} = \dfrac{3F  L}{2YA}$$
  • Question 5
    1 / -0
    A force of $$15N$$ increases the length of a wire by 1mm. The additional force required to increase the length by $$2.5mm$$ in N is
    Solution
    $$Y=\dfrac{F/A}{\Delta l/l}$$

    $$\Delta l=\dfrac{Fl}{AY}$$

    $$\Delta l_1=\dfrac{F_1l}{AY}$$-----(1)

    $$\Delta l_2=\dfrac{F_2l}{AY}$$-----(2)

    Dividing (1) by (2)

    $$\dfrac{\Delta l_1}{\Delta l_2}=\dfrac{F-1}{F-2}$$

    $$\dfrac{1}{2.5}=\dfrac{15}{F_2}$$

    $$F_2=15\times 2.5=37.5$$ N

    So, additional force$$=F_2-F_1$$

    $$=37.5-15$$

    $$=22.5$$N

  • Question 6
    1 / -0
    The density of water at the surface of the ocean is $$\rho $$ . If the bulk modulus of water is B, what is the density of ocean water at a depth where the pressure is nP$$_{o}$$ , where P$$_{o}$$ is the atmosphreic pressure:
    Solution
    Let the volume of certain mass (M) of water at surface be  $$V$$      $$\implies \rho  =\dfrac{M}{V}$$ 
    Pressure at a depth      $$P'  = n P_o$$
    Thus change in pressure      $$\Delta P  = nP_o  - P_o  =(n-1)P_o$$
    Bulk modulus        $$B  = \dfrac{\Delta P}{\Delta V/V}$$             $$\implies  \Delta V = \dfrac{(n-1) P_o V}{B}$$         

    As at a depth, the pressure increases. Thus the volume of water will decrease at that depth.
    $$\therefore$$   Volume of water of mass (M) at that depth      $$V'  = V - \Delta V$$
    $$\therefore$$     $$V'  = V  - \dfrac{(n-1) P_o V}{B}   =  (B  - (n-1) P_o) \dfrac{V}{B}$$                                            ..............(1)

    Density at that depth     $$\rho'  = \dfrac{M}{V'}  = \rho \dfrac{V}{V'}$$
    $$\therefore$$   $$\rho'  =   \dfrac{\rho B}{B - (n-1) P_o}$$                             (using 1)
  • Question 7
    1 / -0
    When a mass is suspended from the end of a wire the top end of which is attached to the roof of the lift, the extension is $$e$$ when the lift is stationary. If the lift moves up with a constant acceleration $$g/2$$, the extension of the wire would be
    Solution
    $$ Y = \dfrac{mg/A}{e/L} = \dfrac{(3/2)  mg/A}{x/L} = Y$$
    $$ x = \dfrac{3e}{2}$$
    Hence,  new  elongation  is $$ \dfrac{3e}{2}$$
    In  this  problem  Young's  modulus  will  be  same  because  were  is  same.  No  change  in  area,  natural  length  will  be  also  same.  But  tension  will  change.  In  the  frame  of  lift  when  it  is  moving  up  by  acceleration  g/2  a   psuedo  force  of  mg/2  units  will  add  in  the  tension  so  elongation  will  increase  to $$ \dfrac{3e}{2}$$
  • Question 8
    1 / -0
    When a sphere of radius $$2 cm$$ is suspended at the end of a wire, elongation is $$'e$$'. When the same wire is loaded with a sphere of radius $$3cm$$ and made of the same material, the elongation would be :
    Solution
    $$Y=\dfrac{F/A}{\Delta l/l}$$

    $$\Delta l=\dfrac{Fl}{YA}$$

    So, $$\dfrac{\Delta l_1}{\Delta l_2}=\dfrac{p\frac{4}{3}\pi r{_{1}}^{3}g}{p\dfrac{4}{3}\pi r{_{2}}^{3}g}$$

    $$\dfrac{\Delta l_1}{\Delta l_2}=\dfrac{(2)^3}{(3)^3}$$

    $$\dfrac{\Delta l_1}{\Delta l_2}=\dfrac{8}{27}$$

    $$\Delta l_2=\dfrac{27}{8}\Delta l_1$$

    $$=\dfrac{27}{8}e$$.

  • Question 9
    1 / -0
    Two bars $$A$$ and $$B$$ of circular section and of the same volume and made of the same material are subjected to tension. If the diameter of $$A$$ is half that of $$B$$ and if the force supplied to both the rods is the same and is within the elastic limit, the ratio of the extension of $$A$$ to that of $$B$$ will be
    Solution
    Using
    $$Y = \dfrac{F/A}{\triangle L/L }$$

    $$ Y = \dfrac{F/ \triangle_{1}}{\triangle L_{1} / L_{1}} - (1)\text{For  bar  A} $$

    $$ Y = \dfrac{F/ \triangle_{2}}{\triangle L_{2} / L_{2}} - (2)\text{For  bar  B} $$
    Volume  is  same  for  A  and  B
    $$So,   R(\dfrac{d_{1}}{2})^{2} L_{1} = R (\dfrac{d_{2}}{2})^{2} L_{2}$$

    $$ d_{1}^{2} L_{1} = 4d_{1}^{2} L_{2}              (given  d_{1} = \dfrac{1}{2}d_{2})$$

    $$ \dfrac{L_{1}}{L_{2}} = 4$$

    Dividing 1 and 2

    $$ 1 = \dfrac{L_{1}   \triangle L_{2}  A_{2}}{L_{2}   \triangle L_{1}  A_{1}}$$

    $$ \dfrac{\triangle L_{1} }{\triangle L_{2}} = 4\times 4            (\because \dfrac{A_{2}}{A_{1}} = (\dfrac{d_{2}}{d_{1}})^{2} = 4) $$

    $$ \dfrac{\triangle L_{1} }{\triangle L_{2}} = 16$$
  • Question 10
    1 / -0
    The density of a metal at normal pressure is $$\rho$$. It's density when it is subjected to an excess pressure p is $$\rho$$'. If B is the bulk modulus of the metal, the ratio $$\rho $$'/$$\rho$$ is :
    Solution

    $$B=-V\dfrac{dP}{dV}$$

    Thus, $$\Delta V=-\dfrac{pV}{B}$$ or $$V'-V=-\dfrac{pV}{B}$$ 

    Or, $$V'=V(1-\dfrac{p}{B})$$

    Now, $$\rho '=\dfrac{m}{V'}=\dfrac{m}{V(1-\dfrac{p}{B})}=\dfrac{\rho}{(1-\dfrac{p}{B})}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now