Self Studies

Mechanical Properties of Solids Test - 40

Result Self Studies

Mechanical Properties of Solids Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The bulk modulus of rubber is $$9.8\times 10^{8}N/m^{2}$$. To what depth a rubber ball be taken in a lake so that its volume is decreased by $$0.1$$% ?
    Solution
    $$B = \dfrac{P}{\dfrac{\Delta V}{V}}$$
    $$P = h \rho g = h \times 10^3 \times 9.8 = 9.8h \times 10^3$$

    $$9.8 \times 10^8 =\dfrac{ 9.8h \times 10^3}{\dfrac{0.1}{100}}$$
    $$h = 100  \ km$$
  • Question 2
    1 / -0
    When a force is applied on a wire of uniform cross-sectional area $$3\times 10^{-6}m^{2}$$ and length $$4 m$$, the increase in length is $$1\ mm$$. Energy stored in it will be ($$Y=2\times 10^{11}N/m^{2}$$):
    Solution
    $$U = \dfrac{1}{2} F \Delta l = \dfrac{1}{2} \times \dfrac{Y \Delta lA}{L} \times \Delta l = \dfrac{1}{2} \times \dfrac{2 \times 10^{11} \times 3\times 10^{-6} \times (10^{-3})^2}{4} = 0.075  J$$
  • Question 3
    1 / -0
    If the potential energy of a spring is V on stretching it by 2 cm then its potential energy when it is stretched by 10 cm will be
    Solution
    Potential Energy $$\propto  x^{2}$$
    Therefore 
    $$\dfrac{V_1}{V_2}=\dfrac{(x_1)^{2}}{(x_2)^{2}}$$
    Here $$V_1=V$$
    $$x_1=4$$
    $$x_2=10$$
    So $$\dfrac{V}{V_2}=\dfrac{(2)^{2}}{(10)^{2}}$$
    $$\dfrac{V}{V_2}=\dfrac{4}{100}$$
    $$\dfrac{V}{V_2}=\dfrac{1}{25}$$
    $$V_2=25V$$
    Hence the correct option is (D).

  • Question 4
    1 / -0
    If the ratio of lengths, radii and Youngs modulii of steel and brass wires in the figure are a, b and c respectively. Then the corresponding ratio of increase in their lengths would be:

    Solution
    Ref image 
    Given ; $$l_S / l_B = a , \, \dfrac{y_S}{y_B} = c$$
    $$\dfrac{r_S}{r_B} = b$$
    By definition, young's Modulus = $$Y = \dfrac{linear \, stress}{linear \, strain}$$
    $$\Rightarrow Y = \dfrac{T/A}{\Delta l/l}$$ 
    where, T - tension in wire
                A - cross sectional area of wire
               $$\Delta l$$ - change in length
                l - original length
    $$\Rightarrow \boxed {\Delta l  = \dfrac{T.l}{Y.A}}$$ __(i)
    FBD : Ref. image     $$T_3 = mg + T_B$$ __(ii)    Ref. image $$T_B = 2mg$$ __(iii)
    Put (iii) in (ii) : $$T_S = mg + 2mg = 3mg$$
    $$\Rightarrow \dfrac{T_S}{T_B}  = \dfrac{3mg}{2mg} = \dfrac{3}{2}$$ __(iv)
    From (i) :
    $$\dfrac{\Delta l_S}{\Delta l_B} = \dfrac{\left(\dfrac{T_S l_S}{Y_S A_S} \right)}{\left(\dfrac{T_B l_B}{Y_B A_B} \right)} \begin{matrix} = \left(\dfrac{T_S}{T_B} \right) . \left(\dfrac{l_S}{l_B} \right) \dfrac{Y_B \, A_B}{Y_S \, A_S} & / for \, a \, wire: A = \pi r^2 \\ = \dfrac{3}{2} \times a \times \dfrac{1}{c} \times \dfrac{\pi r_B^2}{\pi r_S^2} &/ from \, given \, ratios \end{matrix}$$
    $$\boxed {\dfrac{\Delta l_S}{\Delta l_B} = \dfrac{3 a}{2 c.b^2}}$$
    No correct option given

  • Question 5
    1 / -0
    Copper wire of length $$3m$$ and area of cross-section $$1\:mm^{2}$$, passes through an arrangement of two frictionless pulleys, $$P_{1}$$ and $$P_{2}$$. One end of the wire is rigidly clamped and a mass of $$1 kg$$ is hanged from the other end. If Young's modulus for copper is $$10\times 10^{10}N/m^{2}$$, the elongation in the wire is :

    Solution
    $$\Delta l = \dfrac{FL}{AY}$$
    $$\Delta l = \dfrac{10 \times 3}{10\times 10^{10} \times 10^{-6}} = 3\times 10^{-4} =0.3mm$$

  • Question 6
    1 / -0
    The diameter of a brass rod is $$4mm$$ and Youngs modulus of brass is $$\displaystyle 9\times 10^{10}N/m^{2}$$ The force required to stretch it by $$0.1\%$$ of its length is
    Solution
    Let $$F$$ be force
    $$Y$$ be Young's modulus
    $$\Delta$$ be change in length
    $$l$$ be length
    $$F=\dfrac{YA\Delta l}{l}$$

    Given:
    $$\dfrac{\Delta l}{l}=0.001$$
    $$Y=9\times 10^{10} N/m^{2}$$
    $$r=\dfrac{d}{2}=2mm$$
    $$A=\pi r^{2}=\pi\times (2\times 10^{-3})^{2}m^{2}$$
    $$F=\dfrac{YA\Delta l}{l}=9\times 10^{10} \times \pi\times 4\times (10)^{-6}\times 0.001=360\pi$$
    Hence the force is $$360\pi N$$
  • Question 7
    1 / -0
    The graph showing the extension of is wire of length 1 m suspended from the top of a roof at one end and with a load W connected to the other end. of the cross-sectional area of the wire is $$1{mm}^{2}$$, then the Young's modulus of the material  of the wire .( In graph, X-axis 1 unit =  10mm)  .

    Solution
    Let $$Y$$ denote the Young's Modulus.
    Then

    $$Y\dfrac{\triangle L}{L_{0}}=\dfrac{F}{A}$$

    $$L=1m$$ , $$A=10^{-6}m$$

    Hence

    $$Y(\dfrac{(5-1)\times 10^{-3}}m{1m}=\dfrac{100-20N}{10^{-6}m^{2}}$$

    $$Y(4\times 10^{-3})=80\times 10^{6} N m^{-2}$$

    $$Y=20\times 10^{9} N m^{-2}$$

    $$=2\times 10^{10} N m^{-2}$$
  • Question 8
    1 / -0
    A metal block is experiencing an atmospheric pressure of $$\displaystyle 1\times 10^{5}N/m^{2}$$ when the same block is placed in a vaccum chamber the fractional change in its volume is (the bulk modulus of metal is $$\displaystyle 1.25\times 10^{11}N/m^{2}$$) 
    Solution
    Bulk modulus$$(K)$$=$$\cfrac{p}{\cfrac{\triangle V}{V}}$$
    where,$$p=$$pressure experienced$$=1 \times {10}^{5} N/{m}^{2}$$
    $$K=1.25 \times {10}^{11} N/{m}^{2}$$
    $$\therefore \cfrac{\triangle V}{V}=\cfrac{p}{K}$$
    $$=\cfrac {1 \times {10}^{5}}{1.25 \times {10}^{11}}$$
    $$\therefore \cfrac{\triangle V}{V}=8 \times {10}^{-7}$$
  • Question 9
    1 / -0
    Two wires of equal length and cross section area suspended as shown in figure. Their Youngs modulus are $$\displaystyle Y_{1}\: \: and\: \: Y_{2}$$ respectively The equivalent Youngs modulus will be 

    Solution
    $$k=\dfrac{YA}{L}$$
    $$k_1=\dfrac{Y_1A}{L}$$
    $$k_2=\dfrac{Y_2A}{L}$$
    $$k_1$$ and $$k_2 $$ are in parallel.
    $$k_{eq}=k_1+k_2$$
    $$\dfrac{Y_{eq}(2A)}{L}=(Y_1+Y_2)\dfrac{A}{L}$$
    $$Y_{eq}=\dfrac{Y_1+Y_2}{2}$$
  • Question 10
    1 / -0
    A force F is needed to break a copper wire having radius R The force needed to break a copper wire of radius 2R will be
    [assume F is applied along the wire and the wire obeys Hooke's law until it breakes]
    Solution
    $$F=\dfrac{YA\Delta l}{l}$$

    Force $$\propto $$ area 

    $$F\propto \pi r^{2}$$
    $$F_1\propto \pi R^{2}$$
    $$F_2\propto \pi (2R)^{2}=\pi\times  4R^{2}$$
    $$\dfrac{F_1}{F_2}=\dfrac{ \pi \times R^{2}}{\pi\times  4R^{2}}$$
    $$\dfrac{F_1}{F_2}=\dfrac{1}{4}$$
    $$F_2=4F_1$$
    Hence the correct option is (C).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now