Self Studies

Mechanical Properties of Solids Test - 42

Result Self Studies

Mechanical Properties of Solids Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$S$$ is stress and $$Y$$ is Young's modulus of material of wire, then energy stored in the wire per unit volume is:
    Solution
    Energy stored per unit volume can be given as: 
     $$E  =\dfrac{1}{2} \times stress \times strain $$ -----------(1)      
    From Hooke's law :
    Young's modulus, $$Y = \dfrac{Stress}{Strain}$$

    $$\implies$$    $$Strain   = \dfrac{Stress}{Y}   = \dfrac{S}{Y}$$ -----------(2)  
      
    From equation (1) and (2): 
    $$\therefore$$    $$E = \dfrac{1}{2} \times S \times \dfrac{S}{Y} $$

    $$\Rightarrow E=  \dfrac{1}{2} \dfrac{S^2}{Y}$$
    Hence, the correct option is $$(D)$$
  • Question 2
    1 / -0
    A long spring is stretched by $$2   cm$$ and its potential energy is $$U$$. If the spring is stretched by $$10   cm$$; its potential energy will be (in terms of $$U$$)
    Solution
    The potential energy of a stretched spring is
    $$U = \dfrac{1}{2} k{x}^{2}$$
    Here, $$k =$$ spring constant,
              $$x =$$ elongation in spring.
    But given that, the elongation is $$2   cm$$.
    So,   $$U = \dfrac{1}{2} k{\left(2\right)}^{2}$$
    $$\Rightarrow      U = \dfrac{1}{2} k \times 4$$          ......(i)
    If elongation is $$10   cm$$ then potential energy
    $${ U }^{ \prime  }=\dfrac { 1 }{ 2 } k{ \left( 10 \right)  }^{ 2 }$$
    $${ U }^{ \prime  }=\dfrac { 1 }{ 2 } k\times 100$$        ......(ii)
    On dividing equation (ii) by equation (i), we have
    $$\dfrac { { U }^{ \prime  } }{ U } =\dfrac { \dfrac { 1 }{ 2 } k\times 100 }{ \dfrac { 1 }{ 2 } k\times 4 } $$
    or    $$\dfrac { { U }^{ \prime  } }{ U } =25\Rightarrow { U }^{ \prime  }=25U$$
  • Question 3
    1 / -0
    Longitudinal strain is possible in 
    Solution
    Longitudinal strain is possible-only in solids because only solids can have length which can be stretched by applying force. while molecules and liquid are loosely packed together and hence strain cannot occur in these mediums.
  • Question 4
    1 / -0
    The adjacent graph shows the extension ($$\displaystyle \Delta l$$) of a wire of length 1 m suspended from the top of a . roof at one end and with a load W connected to the other end. If the cross-sectional area of the wire is $$\displaystyle { 10 }^{ -6 }{ m }^{ 2 }$$, calculate the Young's modulus of the material of the wire.

    Solution
    $$Y = \dfrac{Fl}{A\Delta l}$$
    from the graph we can see $$\dfrac{\Delta l}{W} = \dfrac{10^{-4}}{20}$$
    $$Y = \dfrac{l}{A\dfrac{\Delta l}{W}}$$ 
    $$ Y = \dfrac{1\times 20}{10^{-6} \times 10^{-4}}$$
    $$Y = 2 \times 10^{11}  N/m^2$$

  • Question 5
    1 / -0
    For a given material, the Young's modulus is $$2.4$$ times that of rigidity modulus. Its poisson's ratio is.
    Solution
    Hint: The “ratio of transverse contraction strain to longitudinal extension strain in the direction of the stretching force” is known as the poisson ratio.

    Explanation:

    Step 1: Formula used:
    The relation of Young's modulus '$$Y$$' and rigidity modulus '$$ \eta $$' and poisson's ratio '$$ \sigma $$' :
    $$Y=2\eta(1+\sigma)$$         ..........(1)

    Step 2: Finding the value of poisson's ratio:

    Given: $$ Y=  2.4 \ \eta $$
    Putting the value in eq. (1)

    $$\Rightarrow 2.4 \ \eta =2 \ \eta \ (1+\sigma)$$
    $$\Rightarrow 1.2=1+\sigma$$
    $$\Rightarrow \sigma=0.2$$

    Option D is correct.
  • Question 6
    1 / -0
    For a constant hydraulic stress on an object, the fractional change in the object's volume ($$\displaystyle \Delta { V }/{ V }$$) and its bulk modulus (B) are related as: 
    Solution
    $$B = \dfrac{stress}{volume \  strain} = \dfrac{stress}{\dfrac{\Delta V}{V}}$$
    $$\dfrac{\Delta V}{V} = \dfrac{stress}{B}$$

    As stress is constant 
    $$\dfrac{\Delta V}{V} \propto \dfrac{1}{B}$$
  • Question 7
    1 / -0
    The length of an elastic string is $$a$$ metre when the longitudinal tension is $$4$$N and $$b$$ metre when the longitudinal tension is $$5$$N. The length of the string in metre when longitudinal tension is $$ 9 $$N is :
    Solution
    Let L is the original length of the wire and k is force constant of wire.
    Final length $$=$$ initial length $$+$$ elongation
    $$L'=L+\displaystyle\frac{F}{k}$$
    For first condition $$a=L+\displaystyle\frac{4}{k}$$     .....$$(i)$$
    For second condition $$b=\displaystyle L+\frac{5}{k}$$   ......$$(ii)$$
    By solving Eqs. $$(i)$$ and $$(ii)$$, we get
    $$L=5a-4b$$ and $$k=\displaystyle\frac{1}{b-a}$$
    Now, when the longitudinal tension is $$9N$$. length of the string.
    $$=L+\displaystyle\frac{9}{k}=5a-4b+9(b-a)$$
    $$=5b-4a$$
  • Question 8
    1 / -0
    A $$5$$m long aluminium wire $$(Y=7\times 10^{10}Nm^{-2})$$ of diameter $$3$$mm supports a $$40$$kg mass. In order to have the same elongation in the copper wire $$(Y=12\times 10^{10}Nm^{-2})$$ of the same length under the same weight, the diameter should now be (in mm).
    Solution
    $$l=\displaystyle\frac{FL}{\pi r^2Y}$$
    $$\Rightarrow r^2\propto \displaystyle\frac{1}{Y}(F, L$$ and $$l$$ are constant$$)$$
    $$\displaystyle\frac{r_2}{r_1}=\left[\displaystyle\frac{Y_1}{Y_2}\right]^{1/2}=\left[\displaystyle\frac{7\times 10^{10}}{12\times 10^{10}}\right]^{1/2}$$
    $$\Rightarrow r_2=1.5\times \displaystyle\left(\frac{7}{12}\right)^{1/2}=1.145$$mm
    $$\therefore$$ diameter$$=2.29$$mm
  • Question 9
    1 / -0
    If a wire having initial diameter of $$2   mm$$ produced the longitudinal strain of $$0.1$$%, then the final diameter of wire is $$\left( \sigma = 0.5 \right)$$
    Solution
    When a deforming force is applied at the free end of a suspend wire of length $$l$$ and radius $$R$$, then its length increases by $$dl$$, but its radius decreases by $$dR$$. Now two types of strains are produced by a single force
    (i) Longitudinal strain $$= \dfrac{\Delta l}{l}$$
    (ii) Lateral strain $$= -\dfrac{\Delta R}{R}$$
    Then the Poisson's ratio
    $$\sigma = \dfrac{lateral   strain}{longitudinal   strain}$$
    $$=-\dfrac { { \Delta R }/{ R } }{ { \Delta l }/{ l } } $$
    $$\sigma =-\dfrac { \Delta R }{ R } \times \dfrac { l }{ \Delta l } $$
    or  $$\left| \sigma  \right| =\dfrac { \Delta R }{ R } \times \dfrac { l }{ \Delta l } $$
    $$\therefore \dfrac { \Delta R }{ R } =\left| \sigma  \right| \left( \dfrac { \Delta l }{ l }  \right) $$
    or  $$\Delta R=0.5\times \dfrac { 0.1 }{ 100 } \times \left( \dfrac { 2\times { 10 }^{ -3 } }{ 2 }  \right) $$
            $$= 0.0005  mm$$
    $$\therefore $$ Final radius $$R - \Delta R = 1   mm - 0.0005   mm$$
                     $$= 0.9995   mm$$
    $$\therefore $$ The final diameter $$=2\times 0.9995   mm$$
                              $$= 1.9990   mm$$
  • Question 10
    1 / -0
    The length of a metal wire is $$L_1$$ when the tension is $$T_1$$ and $$L_2$$ when the tension is $$T_2$$. The unstretched length of wire is :
    Solution
    Let the initial length of the metal wire is L.
    The strain at tension $$T_1$$ is $$\triangle L_1=L_1-L$$
    The strain at tension $$T_2$$ is $$\triangle L_2=L_2-L$$
    Suppose, the Youngs modulus of the wire is Y,
    $$\displaystyle \frac{\dfrac{T_1}{A}}{\dfrac{\triangle L_1}{L}}=\dfrac{\dfrac{T_2}{A}}{\dfrac{\triangle L_2}{L}}$$
    Where, A is an cross-section of the wire assume to be same at all the situations.
    $$\Rightarrow \displaystyle \frac{T_1}{A}\times \frac{L}{\triangle L_1}=\frac{T_2}{A}\times \frac{L}{\triangle L_2}$$
    $$\Rightarrow \displaystyle \frac{T_1}{(L_1-L)}=\frac{T_2}{(L_2-L)}$$
    $$\displaystyle T_1(L_2-L)=T_2(L_1-L); L=\frac{T_2L_1-T_1L_2}{T_2-T_1}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now