Self Studies

Mechanical Properties of Solids Test - 44

Result Self Studies

Mechanical Properties of Solids Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two wires of the same material and length but diameter in the ratio $$1:2$$ are stretched by the same force. The elastic potential energy per unit volume for the two wires when stretched by the same force will be in the ratio:
    Solution
    Elastic energy per unit volume:       $$E = \dfrac{1}{2} \times Stress \times Strain$$
    Using Hooke's law:        $$Strain   = \dfrac{Stress}{Y}$$
    $$\implies$$    $$E = \dfrac{(Stress)^2}{2Y}   = \dfrac{F^2}{2Y A^2}$$            where   $$A = \dfrac{\pi D^2}{4}$$     

    $$\implies$$     $$E = \dfrac{8F^2}{\pi^2 D^4 Y}$$            

    $$\therefore$$  $$\dfrac{E_1}{E_2}   =  \bigg (\dfrac{D_2}{D_1}\bigg )^4$$                               $$ (\because F $$ and $$Y $$ are same for both$$)$$
    GIven :    $$\dfrac{D_1}{D_2}  = \dfrac{1}{2}$$

     $$\dfrac{E_1}{E_2}   =  \bigg (\dfrac{2}{1}\bigg )^4   = \dfrac{16}{1}$$
  • Question 2
    1 / -0
    Two wires A and B are of the same materials. Their lengths are in the ratio $$1:2$$ and the diameters are in the ratio $$2:1$$, When stretched by force $$F_A$$ and $$F_B$$ respectively they get equal increase in their lengths. Then the ratio $$\dfrac{F_A}{F_B}$$ should be:
    Solution
    Using Hooke's law                  $$Y  = \dfrac{F/A}{\Delta L/L}$$       where    $$A  = \dfrac{\pi D^2}{4}$$
    $$\implies$$     $$F  =Y \dfrac{\pi D^2}{4} \dfrac{\Delta L}{L}$$
    As  $$Y$$ and  $$\Delta L$$ are constant, thus         $$F  \propto  \dfrac{D^2}{L}$$
    $$\implies$$     $$\dfrac{F_A}{F_B}  = \dfrac{D^2_A}{D^2_B} \times \dfrac{L_B}{L_A}$$

    Given :           $$D_A:D_B  = 2:1$$     and     $$L_A:L_B  = 1:2$$
    $$\therefore$$         $$\dfrac{F_A}{F_B}  = \dfrac{4}{1} \times \dfrac{2}{1}   =  \dfrac{8}{1}$$
  • Question 3
    1 / -0
    The average depth of Indian ocean is about $$3000\ m$$. The value of fractional compression $$ \dfrac{\Delta V}{V}$$ of water at the bottom of the ocean is:
    [Given that the bulk modulus of water is $$2.2\times 10^9\ Nm^{-2}$$, $$ g=9.8\ ms^{-2}$$ and $$\rho_{H_2O}=1000\ kg.m^{-3}$$]
    Solution

    $$\dfrac{\Delta V}{V}=\dfrac{h\rho g}{k}=\dfrac{3\times 10^3\times 9.8 \times 10^3}{22\times 10^8} $$

                           $$=\dfrac{3}{22}\times 10^{-3}\times 98\\ =\dfrac{147}{11}\times 10^{-3}\\=1.34\times 10^{-2}m$$

  • Question 4
    1 / -0
    Let L be the length and d be the diameter of cross-section of a wire. Wires of the same material with different L and d are subjected to the same tension along the length of the wire. In which of the following cases, the extension of wire will be the maximum?
    Solution
    Since material is same, Young's modulus is also same. 
    We have: $$Y\dfrac { \Delta l }{ l } =\dfrac { F }{ A } \Rightarrow \Delta l=\dfrac { Fl }{ YA } \propto \dfrac { l }{ { d }^{ 2 } } $$
    where, $$Y$$ is the Young's Modulus, $$F$$ is the tension which is same in all cases, $$A$$ is the area of cross section of the wire and $$l$$ is the length of the wire.

    Calculating the value of $$ \dfrac { l }{ { d }^{ 2 } } $$ in all cases, we get:
    A: $$\dfrac { l }{ { d }^{ 2 } } =\dfrac { 2000 }{ 0.5\times 0.5 } =8000$$

    B: $$\dfrac { l }{ { d }^{ 2 } } =\dfrac { 3000 }{ 1.0\times 1.0 } =3000$$

    C: $$\dfrac { l }{ { d }^{ 2 } } =\dfrac { 50 }{ 0.05\times 0.05 } =20000$$

    D: $$\dfrac { l }{ { d }^{ 2 } } =\dfrac { 100 }{ 0.2\times 0.2 } =2500$$

    So maximum elongation will be in case C.
  • Question 5
    1 / -0
    The Poisson's ratio of a material is $$0.5$$. If a force is applied to a wire of this material, there is a decrease in the cross-sectional area by 4%. The percentage increase in the length is :
    Solution
    Poisson ratio $$=0.5$$
    Since, density is constant therefore change in volume is zero, we have
        $$V=A\times l=$$ constant
    $$\Rightarrow \log { V } =\log { A } +\log { l } $$
    or $$\dfrac { dA }{ A } +\dfrac { dl }{ l } =0$$
    $$\Rightarrow \dfrac { dl }{ l } =-\dfrac { dA }{ A } $$
    $$\therefore $$ Percentage increase in length $$=4$$%
  • Question 6
    1 / -0
    A uniform aluminium wire of length $$3$$m and area of cross-section $$2$$ $$mm^2$$ is extended through $$12\ mm$$. The energy stored in the wire is ___________. ($$Y_{Al}=7\times 10^{10}N/m^2$$)
    Solution
    $$A= $$ area of cross section
    $$ L=$$ length of the wire
    $$ K=$$ spring constant 

    $$K=\dfrac { A{ Y }_{ al } }{ L } \\ E=\dfrac { 1 }{ 2 } K{ x }^{ 2 }=\dfrac { A{ Y }_{ al }{ x }^{ 2 } }{ 2L } =\dfrac { 2\times { { 10 }^{ -6 }\times 7\times { 10 }^{ 10 }\times  }{ (12\times { 10 }^{ -3 }) }^{ 2 } }{ 2\times 3 } =3.36J$$
  • Question 7
    1 / -0
    The ability of the material to deform without breaking is called :
    Solution
    The quality of being easily shaped or moulded is called Plasticity
    So Plasticity is the ability of the material to deform without breaking
    Therefore option $$B$$ is correct
  • Question 8
    1 / -0
    A ball is falling in a lake of depth $$200 m$$ creates a decrease of $$0.1$$% in its volume at the bottom. The bulk modulus of the material of the ball will be:
    Solution
    The density of water is $$d=10^{3}Kg/m^{3}$$
    The depth of lake is $$h=200m$$
    The decrease in volume is $$0.1$$%
    The bulk modulus will be $$B=V\frac{P}{dV}=\frac{dgh}{\frac{dV}{V}}=\frac{10^{3} \times 9.8 \times 200}{10^{-3}}=19.6 \times 10^{8}$$

  • Question 9
    1 / -0
    A tension of $$22$$ N is applied to a copper wire of cross-sectional area $$0.02\ cm^2$$. Young's modulus of copper is $$1.1\times 10^{11}N/m^2$$ and Poisson's ratio $$0.32$$. The decrease in cross sectional area will be:
    Solution
    Young's modulus, $$Y=\dfrac{Fl}{A\Delta l} $$ and Poisson's ratio , $$\sigma=\dfrac{\Delta r/ r}{\Delta l/l}$$

    From these we get, $$\Delta r/ r=\dfrac{F\sigma}{AY}=\dfrac{22\times0.32 }{0.02\times 10^{-4}\times 1.1\times 10^{11}}=32\times 10^{-6}$$

    Cross sectional area , $$A=\pi r^2 $$ and $$\Delta A=2\pi r \Delta r$$

    Thus, $$\dfrac{\Delta A}{A}=\dfrac{2\Delta r}{r}=64\times 10^{-6} $$

    $$\therefore \Delta A= 64\times 10^{-6}\times 0.02=1.28\times 10^{-6} cm^2$$
  • Question 10
    1 / -0
    A steel wire if $$1\ m$$ long and $$1\ mm^2$$ cross section area is hanged from rigid end when weight of $$1\ kg$$ is hang from it, then change in length will be
    (Young's coefficient for wire $$Y=2\times 10^{11}N/m^2)$$
    Solution
    Young's coefficient $$Y$$ of a wire of length $$l$$ and cross section $$A$$ , having weight $$mg$$ is given by ,
               $$Y=\dfrac{mgl}{A\Delta l}$$
    or        $$\Delta l=\dfrac{mgl}{AY}$$
    where $$\Delta l=$$ change in length
    given - $$Y=2\times10^{11}N/m^{2} , l=1m , A=1mm^{2}=10^{-6}m^{2} , m=1kg$$ 
    Hence , $$\Delta l=\dfrac{1\times10\times1}{10^{-6}\times2\times10^{11}}=5\times10^{-5}m=0.05mm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now