Self Studies

Mechanical Properties of Solids Test - 66

Result Self Studies

Mechanical Properties of Solids Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The $$'\sigma '$$ of a material is 0.20. If a longitudinal strain of $$4.0\times { 10 }^{ -3 }$$ is caused, by what percentage will the volume change -
    Solution
    $$\begin{array}{l}\text { Longitudenal }  \text { Strain }=4\times 10^{-3} \\\text {Lateral Strain }=\sigma \times 0.4\% \\=0.08 \%\end{array}$$

    $$\begin{aligned}\text { Volumetric strain } &=\text { long}\text {itudinal Strain }-2 \times \text { lateral Strain } \\&=4 \times 10^{-3}-2 \times 8 \times 10^{-4}\\&=0.24\%\end{aligned}$$
  • Question 2
    1 / -0
    When a wire is stretched, an amount of work is done. What is the amount of work done in stretching a wire through $$0.1mm$$, if its length is $$2m$$ and area of cross - section, $$10^-6m^2 ( Y=2 \times10^11 N/m^2)$$
    Solution
    Young Modulus of Elasticity
    $$Y=\frac{FL}{Al}$$
    $$F=\frac{YAl}{L}$$
    $$F=\frac{2\times 10^{11}\times 1\times 10^{-6}\times 10^{-3}\times 10^{-1}}{2}$$
    $$F= 100\,N$$
    Work Done = $$\frac{1}{2}\times 100\times 1\times 10^{-3}\times 10^{-1}$$
    $$ = 0.005 \, J$$
    Work done = $$5\times 10^{-3}\, joule$$

  • Question 3
    1 / -0
    A square frame of ABCD consisting of five steel bars of cross section area $$400 \,mm^2$$ and joined by pivot is subjected to action of two forces $$P =40 \, kN$$ in the direction of the diagonal as shown.Find change in angle at $$A$$ if Young's modulus $$Y=2\times 10^5 \,N/min.$$

  • Question 4
    1 / -0
    A wire is subjected to a tensile stress. If A represents area of cross-section, L represents original length, I represents extension and Y is Young's modulus of elasticity, then elastic potential energy of the stretched wire is
    Solution
    Work done $$=\dfrac{1}{2}\times stress \times strain \times volume $$

                        $$=\dfrac{1}{2}\times Y\times \left( strain \right)^2\times volume$$

                        $$=\dfrac{1}{2}\times Y\times \left( \dfrac{I}{L}\right)^2 \times AL$$

                        $$=\dfrac{1}{2}\times Y\times \dfrac{I^2}{L^2}\times AL$$

                        $$=\dfrac{YI^2A}{2L}$$

                        $$=\dfrac{YI^2A}{2L}$$
    Hence, the answer is $$\dfrac{YI^2A}{2L}.$$

  • Question 5
    1 / -0
    A bar is subjected to an axial forces as shown in figure. Find the total elongation in the bar. (E is the modulus of elasticity of the bar and A is its cross-section)

    Solution
    In given figure,
    Considering the two halves separately.
    Since, this heavy need to be in equilibrium.
    An additional force facts towards light.
    So, $$\Delta h = \frac{F}{A} \times \frac{l}{E} = \frac{{3Fl}}{{AE}} = \frac{{3Fl}}{{AE}}$$
    The other haly becomes.
    $$\Delta {h_2} = \frac{{Fl}}{{AE}}$$
    Net elongation $$ = \frac{{4Fl}}{{AE}}$$

  • Question 6
    1 / -0
    For maximum extension with given load for a wire with same value of Young's modulus of elasticity, which is true?
    Solution
    $$ \begin{array}{l} \text { Given } \\ \text { - load is same for all } \\ \text { - young modulus of elasticity is also same } \end{array} $$
    We know.
    $$ Y=\frac{\text { stress }}{\text { strain }} $$
    $$Y=\frac{F_{\text {load }}}{A\left(\frac{\Delta l}{l}\right)}$$
    $$\left[\begin{array}{l}\text { Stress }=\frac{\text { Fioad }}{\text { Area of cross section }} \\ \text { Strain }=\frac{\text { change in length }}{\text { total length }}\end{array}\right.$$
    $$ \Delta l=\frac{F_{\text {load }} l}{A Y}=\frac{4 F_{\text {load }} l}{\pi d^{2} Y} $$
    $$ \begin{array}{l} \text { - For } \Delta l \text { to be maximum }\left(\frac{l}{d^{2}}\right) \text { should be maximum } \\ \text { By checking option (d) will be correct option } \end{array} $$
  • Question 7
    1 / -0
    A wire of density $$ 9 \times 10^3 Kg/m^3 $$ is stretched between two clamps 1 m apart and is stretched to an extension of $$ 4.9 \times 10^{-4} $$ meter, Young's modulus of material is $$ 9 \times 10^{10} N/m^2 $$. Then 
    Solution
    $$\begin{array}{l}\text { This is a fundamental standing wave } \\\qquad \begin{aligned}\Rightarrow L &=\frac{\lambda}{2}\\& \lambda=2 L \\\text { we know that, }&V=n\lambda\\\text { Also } & Y=\sqrt{\frac{T}{\mu}}\end{aligned}\end{array}$$

    $$\begin{aligned}n_{0} &=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}\\\text { Given, } & \rho=a \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\& l=1 \mathrm{~m} \\& \Delta l=4.9\times10^{-4} \mathrm{~m} \\&Y=9\times10^{10}\mathrm{~N} / \mathrm{m}^{2}\end{aligned}$$

    $$\begin{aligned}n_{0} &=\frac{1}{2 \times 1} \sqrt{\frac{V{A }\Delta l}{l A \rho}} \\&=\frac{1}{2}\sqrt{\frac{9\times10^{10} \times 4.9 \times 10^{-4}}{1\times 9 \times 10^{3}}}{10}\\n_{0}&=35\mathrm{~Hz}\end{aligned}$$
  • Question 8
    1 / -0
    The bulk modulus of a spherical object is B. If it is subjected to uniform pressure p, the fractional decrease in radius is
    Solution

  • Question 9
    1 / -0
    When a rubber ball is taken to bottom of lake, its volume reduces by 0.1% then depth of lake (Bulk modulus rubber is $$6\times { 10 }^{ 8 }N/{ m }^{ 2 }$$)
    Solution
    Given decrease in volume $$\left(\frac{\Delta V}{v} \times 100\right)=-0.1 \%$$
    Bulk modulus of rubber $$(\beta)=6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$$
    depth of lake Let $$d$$
    we Know Putting value $$ 6 \times 10^{8}=\frac{+10^{3} \times 10 \times d}{+0.1 \times 10^{-2}} \quad\left\{\begin{array}{l} P_{\text {water }}=10^{3} \mathrm{Kg} / \mathrm{m}^{3} \\ g=10 \mathrm{~m} / \mathrm{s}^{2} \end{array}\right. $$ $$ d=60 \mathrm{~m} $$
  • Question 10
    1 / -0
    When a rubber cord is stretched, the change in volume with respect to change in its linear dimensions is negligible. The Poisson's ratio for rubber is 
    Solution
    $$V = \pi {r^2}I$$
    $$\frac{{\Delta V}}{V} = \frac{{\Delta \left( {\pi {r^2}I} \right)}}{{\pi {r^2}I}}$$
    $$\frac{{\Delta V}}{V} = \frac{{{r^2}\Delta I + 2rI\Delta r}}{{{r^2}I}}$$
    $$\frac{{\Delta V}}{V} = \frac{{\Delta I}}{I} + \frac{{2\Delta r}}{r}$$
    But $$\frac{{\Delta V}}{V} = 0$$
    therefore$$,$$ $$\frac{{\Delta I}}{I} = \frac{{ - 2\Delta r}}{r}$$
    Now$$,$$ Poisson's ratio$$,$$ $$\sigma  = \frac{{\frac{{ - \Delta r}}{r}}}{{\frac{{\Delta I}}{I}}}$$-------------------$$(1)$$
    from equation $$(1),$$
    $$\sigma  =  - \left( {\frac{{\frac{{\Delta r}}{r}}}{{\frac{{ - 2\Delta r}}{r}}}} \right) = \frac{1}{2} = 0.5$$
    Hence,
    option $$(C)$$ is correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now