Self Studies

Mechanical Properties of Solids Test - 73

Result Self Studies

Mechanical Properties of Solids Test - 73
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$32 g$$ of $$O_{2}$$ is contained in a  cubical container  of side $$1 m$$  and  maintained at a temperature of $$127 ^{0} C$$. The isothermal bulk modulus of elasticity of the gas in terms of universal gas constant $$R$$ is
    Solution
    Bulk modulus of elasticity,
    $$ B =   \dfrac{\Delta P}{ \Delta V / V}  $$

    "B" is directly proportional to "p"

    Now, Ideal gas equation

    $$PV = n RT$$

    $$P = nRT / V$$

    $$B = P = nRT /V$$

    $$ B =  \dfrac{1 \times R \times  400}{ 1^{3} }  $$

    $$ B =400 R $$
  • Question 2
    1 / -0
    A uniform cylindrical wire is subjected to a longitudinal tensile stress of $$5\times 10^{7} N/m^{2}$$. Young's modulus of the material of the wire is $$2\times 10^{11} N/m^{2}$$. The volume change in the wire is $$0.02\%$$. The fractional change in the radius is
    Solution
    $$Y=\dfrac{Stress}{\Delta L/L}$$

    $$\dfrac{\Delta L}{L}=\dfrac{stress}{Y}=\dfrac{5\times 10^7}{2\times 10^{11}}=2.5\times 10^{-4}$$

    Now $$V=\pi r^2L$$

    $$\dfrac{\Delta V}{V}=\dfrac{\pi\Delta (r^2L)}{\pi r^2L}$$$$=\dfrac{r^2\Delta L+L\times 2r\Delta r}{r^2L}$$

    $$\dfrac{\Delta L}{L}+2\dfrac{\Delta r}{r}$$

    $$2\dfrac{\Delta r}{r}=\dfrac{\Delta V}{V}-\dfrac{\Delta L}{L}$$$$=\dfrac{0.02}{100}-2.5\times 10^{-4}$$

    $$\dfrac{\Delta r}{r}=1\times 10^{-4}-\dfrac{2.5}{2}\times 10^{-4}=-0.25\times 10^{-4}$$
  • Question 3
    1 / -0
    Find how the volume density of the elastic deformation energy is distributed in a steel rod depending on the distance $$r$$ from its axis. The length of the rod is equal to $$l$$, the torsion angle to $$\varphi$$.
    Solution
    We know that $$E=\dfrac{G\pi r^4\varphi^2}{4l}$$

    $$\dfrac{dE}{dr}=\dfrac{4G\pi r^3\varphi^2}{4l}$$

    $$E=\dfrac{4G\pi r^3\varphi^2dr}{4l}$$

    Also $$dV=2\pi lrdr$$ , where $$V$$ is volume.

    $$\dfrac{dE}{dV}=\dfrac{G r^2\varphi^2}{2l^2}$$
  • Question 4
    1 / -0
    A copper rod of length $$l$$ is suspended from the ceiling by one of its ends. Find the elongation $$\Delta l$$ of the rod due to its own weight.
    Solution
    Let the tension acting on $$dx $$ element of rod be  $$T_x$$ and due to this the elongation in that element be $$\delta x$$
    $$T_x = M_x g$$
    $$T_x = \rho (S x)g$$                    ...........(1)                      Where  $$S$$ is the cross sectional area of the rod

    From Hooke's law,       $$E  = \dfrac{T_x dx}{S \delta x}$$             $$\implies \delta x = \dfrac{T_x  dx}{SE}$$

    $$\therefore$$ Total elongation in the rod      $$\int \delta x  = \int_0^l   \dfrac{T_x }{SE} dx$$
    $$\therefore$$         $$\Delta l = \int_0^l \dfrac{\rho g}{E} xdx  $$

    OR    $$\Delta l = \dfrac{\rho g}{E}  \times \dfrac{x^2}{2}\bigg|_0^l$$                       $$\implies$$    $$\Delta l = \dfrac{\rho g l^2}{2 E}$$

  • Question 5
    1 / -0
    The length of a metal is $$l_1$$ when the tension in it is $$T_1$$ and is $$l_2$$ when the tension is $$T_2$$. The original length of the wire is  :
    Solution
    If l is the original length of wire, then change in length of first wire, $$\displaystyle\displaystyle\displaystyle \Delta l_1=(l_1-l)$$
    Change in length of second wire, $$\Delta l_{ 2 }=(l_{ 2 }-l)$$
    Now, $$Y=\displaystyle\frac{T_1}{A}\times \frac{l}{\Delta l_1}=\frac{T_2}{A}\times \frac{l}{\Delta l_2}$$
    or, $$\displaystyle\frac{T_1}{\Delta l_1}=\frac{T_2}{\Delta l_2}$$, or, $$\displaystyle\displaystyle\frac{T_1}{l_2-l}=\frac{T_2}{l_2-l}$$

    Thus, $$T_{ 1 }l_{ 2 }-T_{ 1 }l=T_{ 2 }l_{ 1 }-lT_{ 2 }$$
    $$\Rightarrow l=\displaystyle\frac{T_2l_1-T_1l_2}{T_2-T_1}$$
  • Question 6
    1 / -0
    In Searle's experiment to find Young's modulus the diameter of wire is measured as $$d=0.05cm$$, length of wire is $$l=125cm$$ and when a weight,$$m=20.0kg$$ is put, extension in wire was found to be $$0.100cm$$. Find the maximum permissible error in Young's modulus $$(Y)$$. Use:$$Y=\displaystyle\frac{mgl}{(\pi/4)d^2x}$$.
    Solution
    $$Y=\displaystyle\frac{mgl}{(\pi/4)d^2x}$$ .....$$(1)$$
    $$\displaystyle\left[\frac{dY}{Y}\right]_{max}$$ $$=\displaystyle \frac{\Delta m}{m}+\frac{\Delta l}{l}+2\frac{\Delta d}{d}+\frac{\Delta x}{x}$$
    $$m=20.0kg\Rightarrow \Delta m=0.1kg$$
    $$l=125cm\Rightarrow \Delta l=1cm$$
    $$d=0.050cm\Rightarrow \Delta d=0.001cm$$
    $$x=0.100cm\Rightarrow \Delta x=0.001cm$$
    $$\displaystyle\left[\frac{dY}{Y}\right]_{max}=\displaystyle\left[\frac{0.1kg}{20.0kg}+\frac{1cm}{125cm}+2\times \frac{0.001cm}{0.05cm}+\frac{0.001cm}{0.100cm}\right]\times 100\%=6.3\%$$
  • Question 7
    1 / -0
     Young's modulis of brass and steel are  $$10 \times 10^{10}\ N/m$$ and $$2\times 10^{11}\ N/m^2$$, respectively. A brass wire and a steel wire of the same length are extended by $$1mm$$ under the same force. The radii of brass and steel wires are $$R_B$$ and $$R_S$$ respectively. Then
    Solution
    We know that $$Y=\dfrac{FL}{\pi r^2l}$$ or $$r^2=\dfrac{FL}{(Y\pi l)}$$

    $$\therefore R^2_B=\dfrac{FL}{(Y_B\pi  l)}$$ and $$R^2_S=\dfrac{FL}{(Y_S\pi l)}$$

    $$\dfrac{R^2_B}{R^2_S}=\dfrac{Y_S}{Y_B}=\dfrac{2\times 10^{10}}{10^{10}}=2$$

    $$R^2_B=2R^2_S$$

    Thus, we get $$R_S=\dfrac{R_B}{\sqrt{2}}$$
  • Question 8
    1 / -0
    If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are a, b and c respectively, the ratio between the increase in lengths of brass and steel wires would be :

    Solution
    $$\Delta L=\dfrac{FL}{AY}$$

    Force on the Steel wire $$=20N$$

    Elongation in the steel wire $$=\dfrac{20\times l_s}{A_s Y_s}$$

    Force on the brass wire $$=20N+20N=40N$$

    Elongation in the brass wire $$=\dfrac{40\times l_b}{A_b Y_b}$$

    $$\Rightarrow \dfrac{\Delta L_b}{\Delta L_s}=\dfrac{40}{20}\dfrac{L_b}{L_s}\dfrac{r_s^2}{r_b^2}\dfrac{Y_s}{Y_b}=\dfrac{2b^2c}{a}$$
  • Question 9
    1 / -0
    A tension of $$20\  N$$ is applied to a copper wire of cross sectional area $$0.01 cm^2$$, Young's Modulus of copper is $$1.1\times 10^{11} N/m^2$$ and Poisson's ratio is 0.32. The decrease in cross sectional area of the wire is:
    Solution
    In case Poisson ratio ($$\nu $$) is given, the relation between stress and strain contains factor of 2,

    Hence, $$\dfrac { \Delta A }{ A } =\dfrac { 2 }{ Y } \dfrac { F }{ A } \nu $$

    $$\Delta A=\dfrac { 2F }{ Y } \nu =2\dfrac { 20N }{ 1.1 \times { 10 }^{ 11 }N/{ m }^{ 2 } } (0.32)=1.16 \times { 10 }^{ -6 }{ cm }^{ 2 }$$

  • Question 10
    1 / -0
    The length of a metal wire is $$l_1$$ when the tension in it is $$F_1$$ and $$l_2$$ when the tension is $$F_2$$. Then original length of the wire is:
    Solution

    $$F\propto \Delta l$$

    $$F_1\propto l_1-l$$

    Where $$l$$, is the original length of the wire

    $$F_2\propto l_2-l$$

    $$\dfrac{F_1}{F_2}=\dfrac{l_1-l}{l_2-l}$$

    $$F_1l_2-F_1l=F_2l_1-F_2l$$

    $$(F_2-F_1)l=F_2l_1-F_1l_2$$

    $$l=\dfrac{F_2l_1-F_1l_2}{F_2-F_1}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now