Self Studies

Mechanical Properties of Solids Test - 74

Result Self Studies

Mechanical Properties of Solids Test - 74
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    An Aluminium and Copper wire of same cross sectional area but having lengths in the ratio $$2 : 3$$ are joined end to end. This composite wire is hung from a rigid support and a load is suspended from the free end. If the increase in length of the composite wire is $$2.1 \ mm$$, the increase in lengths of Aluminium and Copper wires are : [$$\displaystyle { Y }_{ Al }=20\times { 10 }^{ 11 }{ N }/{ { m }^{ 2 } }$$ and $$\displaystyle { Y }_{ Cu }=12\times { 10 }^{ 11 }{ N }/{ { m }^{ 2 } }$$]
    Solution
    Since the tension and cross section area of both the wires are same, stress in both the wires is same.

    Since, $$\dfrac { T }{ A } =Y\times \dfrac { \Delta l }{ l } $$

    Hence, $$\Delta l=k\dfrac { l }{ Y } $$

    $$\dfrac { \Delta { l }_{ 1 } }{ \Delta { l }_{ 2 } } =\dfrac { { l }_{ 1 } }{ { l }_{ 2 } }\times \dfrac { { Y }_{ 2 } }{ { Y }_{ 1 } } =\dfrac { 2 }{ 3 }\times  \dfrac { 12 }{ 20 } =\dfrac { 2 }{ 5 } $$

    Hence, $$2x+5x=2.1\ mm$$ (Given)

    $$x=0.3\ mm$$

    Hence the lengths are $$2x=0.6\ mm$$ and $$5x=1.5\ mm$$

  • Question 2
    1 / -0
    A copper wire and a steel wire of the same length and same cross section are joined end to end to form a composite wire. The composite wire is hung from a rigid support and a load is suspended from the other end. If the increase in length of the composite wire is $$2.4\ mm$$, then the increase in lengths of steel and copper wires are:
    $$(Y_{cu} = \, 10 \times \, 10^{10} \, N/m^2, \, Y_{steel} = \, 2 \times \, 10^{11} \, N /m^2)$$  
    Solution
    Given :     $$L_{cu}  = L_{steel} = L$$               $$A_{cu} = A_{steel} = A$$
    Let the increase in the lengths of individual wires be  $$\Delta l_{cu}$$  and  $$\Delta l_{steel}$$ .
    Total increase in the length of composite wire     $$\Delta l_{total} = 2.4\ mm$$
    $$\therefore$$   $$\Delta l_{cu}  + \Delta l_{steel}  = 2.4$$                       ...........(1)

    Also    $$Y  =\dfrac{F L}{A \Delta l}$$            $$\implies  \Delta l = \dfrac{FL}{AY}$$

    $$\therefore$$    $$\Delta l_{cu}  = \dfrac{F L_{cu}}{A_{cu} Y_{cu}}  = \dfrac{FL}{A Y_{cu}}$$

    Similarly     $$\Delta l_{steel}  = \dfrac{F L_{steel}}{A_{steel} Y_{steel}}  = \dfrac{FL}{A Y_{steel}}$$

    Dividing these two equations we get           $$\dfrac{\Delta l_{cu}}{\Delta l_{steel}}  = \dfrac{Y_{steel}}{Y_{cu}}$$
    $$\therefore$$          $$\dfrac{\Delta l_{cu}}{\Delta l_{steel}}  = \dfrac{2\times 10^{11}}{10 \times 10^{10} } = 2$$                   $$\implies $$    $$\Delta l_{cu} = 2\Delta l_{steel}$$                             ............(2)

    From (1) and (2),            $$ 2\Delta l_{steel} + \Delta l_{steel}  = 2.4$$                 $$\implies$$   $$\Delta l_{steel}  =0.8\ mm$$
    $$\therefore$$   $$\Delta l_{cu } = 2 \times 0.8  =1.6\  mm$$
  • Question 3
    1 / -0
    A solid sphere of radius 20cm is subjected to a uniform pressure of $$ 10^{6}$$ $$N m^{-2}$$. If the bulk modulus is $$1.7 \times 10^{11}$$ $$N m^{-2}$$, the decrease in the volume of the solid is approximately equal to:
    Solution
    The volume of the sphere is $$\dfrac{4}{3}\pi r^{3}=\dfrac{4 \times 22 \times 0.008}{3 \times 7}=0.0335$$

    The pressure applied is $$10^{6}\ Nm^{-2}$$

    The Bulk modulus is defined as $$B=\dfrac{PV}{X}$$ , where $$X$$ is change in volume.

    $$\Rightarrow X=\dfrac{PV}{B}=\dfrac{10^{6} \times 0.0335}{1.7 \times 10^{11}}=0.2 \ cm^{3}$$

    Therefore option $$A$$ is correct.
  • Question 4
    1 / -0
    When a metallic wire is stretched with a tension $$\displaystyle { T }_{ 1 }$$ its length is $$\displaystyle { l }_{ 1 }$$ and with a tension $$\displaystyle { T }_{ 2 }$$ its length is $$\displaystyle { l }_{ 2 }$$. The original length of the wire is:
    Solution
    From the relation between stress and strain, we get, 

    $$\dfrac { F }{ A } =Y\dfrac { \Delta l }{ l } $$

    Thus $$\dfrac { { T }_{ 1 } }{ A } =Y\dfrac { { l }_{ 1 }-l }{ l } $$ and $$\dfrac { { T }_{ 2 } }{ A } =Y\dfrac { { l }_{ 2 }-l }{ l } $$

    Dividing the two equations, we get,

    $$\dfrac { { T }_{ 1 } }{ { T }_{ 2 } } =\dfrac { l-{ l }_{ 1 } }{ l-{ l }_{ 2 } } $$

    $$l=\dfrac { { l }_{ 1 }{ T }_{ 2 }-{ l }_{ 2 }{ T }_{ 1 } }{ { T }_{ 2 }-{ T }_{ 1 } } $$


  • Question 5
    1 / -0
    A thick uniform rubber rope of density $$1.5\ g\ cm^{-3}$$ and Young's modulus $$5 \times 10^{6}$$ $$N m^{-2}$$ has a length of $$8 m$$. When hung from the ceiling of a room, the increase in length of the rope due to its own weight will be
    Solution
    The youngs modulus $$Y$$ is defined as $$Y=\frac{FL}{Ax}$$ , where $$F$$ is force apllied , $$L$$ is original length $$x$$ is change in length and $$\sigma=$$density of the wire.
    $$\Rightarrow x=\frac{\sigma L^{2}g}{AY} (\therefore  F=mg=\sigma \times A\times L \times g) $$ 
    $$\Rightarrow x=\frac{\sigma L^{2}g}{Y}=\frac{1.5 \times 10^{-3} \times 64 \times 10}{5 \times 10^{6}}=19.2 \times 10^{-2}$$
    Therefore option $$B$$ is correct
  • Question 6
    1 / -0
    When an elastic material with Young's modulus Y is subjected to stretching stress S, elastic energy stored per unit volume of the material is 
    Solution
    Given,
    Young's modulus $$=Y,$$
    Streaching stress$$=S,$$
    Energy stored per unit volume is, $$=\cfrac{1}{2} \times $$ stress $$\times $$ strian
    We know that, stress $$=$$ strain $$\times Y$$
    Therefore energy per unit volume will be $$E = \cfrac{1}{2} \times S \times \cfrac{S}{Y}=\cfrac{S^{2}}{2Y}$$
    Therefore option $$C$$ is correct.
  • Question 7
    1 / -0
    The length of a metal wire is $$l_{1}$$ when the tension in it is $$T_{1}$$ and is $$l_{2}$$ when the tension is $$T_{2}$$. The natural length of wire is
    Solution
    Let the natural length of wire be  $$l_o$$.
    Using Hooke's law,    $$Y = \dfrac{Tl_o}{A\Delta l}$$
    where  $$\Delta l = l-l_o$$
    We get  $$l-l_o = \dfrac{Tl_o}{AY}$$
    Case 1 :  Tension is $$T_1$$ and length of wire $$l=l_1$$
    $$\therefore$$  $$l_1-l_o = \dfrac{T_1l_o}{AY}$$       .....(1)
    Case 2 :  Tension is $$T_2$$ and length of wire $$l=l_2$$
    $$\therefore$$  $$l_2-l_o = \dfrac{T_2l_o}{AY}$$       .....(2)
    Dividing both equations   $$\dfrac{l_1 - l_o}{l_2 - l_o} = \dfrac{T_1 }{T_2}$$
    $$\implies$$  $$l_o = \dfrac{l_1T_2 - l_2T_1}{T_2-T_1}$$
  • Question 8
    1 / -0
    The rubber cord of a catapult has cross-section area $$2m{m}^{2}$$ and a total unstretched length $$15cm$$. It is stretched to $$18cm$$ and then released to project a particle of mass $$3g$$. Calculate the velocity of projection if $$Y$$ for rubber is $$8\times { 10 }^{ 8 }N/{ m }^{ 2 }$$.
    Solution
    Given,  $$Y=8\times { 10 }^{ 8 }N/{ m }^{ 2 }$$
                $$A=2{ mm }^{ 2 }=\dfrac { 2 }{ { \left( 1000 \right)  }^{ 2 } } { m }^{ 2 }$$
               $$L=15cm=\dfrac { 15 }{ 100 } m$$
               $$l=\left( 18-15 \right) =3cm=\dfrac { 3 }{ 100 } m$$
    Let, velocity will be V m/s.
    $$\therefore $$  Stored potential energy = Kinetic energy
    or,  $$\dfrac { YA{ l }^{ 2 } }{ 2L } =\dfrac { 1 }{ 2 } m{ v }^{ 2 }$$
    or,  $${ v }^{ 2 }=\dfrac { YA{ l }^{ 2 } }{ mL } $$
    or,  $${ v }^{ 2 }=\dfrac { \left( 8\times { 10 }^{ 8 } \right) \times 2\times { 3 }^{ 2 }\times 100\times 1000 }{ { \left( 1000 \right)  }^{ 2 }\times { \left( 100 \right)  }^{ 2 }\times \left( 3\times 10 \right) \times 15 } $$
    $$\therefore \quad v=56.5m/s$$
  • Question 9
    1 / -0
    The Young's modulus of a material is $$2\times { 10 }^{ 11 }N/{ m }^{ 2 }$$ and its elastic limit is $$1.8\times { 10 }^{ 8 }N/{ m }^{ 2 }$$. For a wire of $$1m$$ length of this material, the maximum elongation achievable is
    Solution
    From Hooke's law   $$ strain=\cfrac { stress }{ Y } $$
    where $$strain = \dfrac{e}{l}$$
    Given :  $$stress = 1.8\times 10^8 \ N/m^2$$    $$Y = 2\times 10^{11} N/m^2$$   $$l=1 \ m$$
    $$\therefore$$  $$e=\cfrac { stress }{ Y } l=\cfrac { { 10 }^{ 8 } }{ 2\times { 10 }^{ 11 } } \times 1=5\times { 10 }^{ -4 }m=0.5mm$$
  • Question 10
    1 / -0
    A rigid bar of mass $$15 kg$$ is supported symmetrically by three wires each $$2 m$$ long. Those at each end are of copper and the middle one is of iron. Determine the ratio of their diameters if each is to have the tension? (Given E for copper = $$110\times 10^{9} N/m^{2}$$ and E for iron = $$190\times 10^{9} N/m^{2}$$).
    Solution
    Let $${ A }_{ 1 }$$ and $${ A }_{ 2 }$$ be the areas of cross-section of copper and iron wires respectively. If $${ d }_{ 1 }$$ and $${ d }_{ 2 }$$ be their respective diameters, then
    $${ A }_{ 1 }=\dfrac { \pi { d }_{ 1 }^{ 2 } }{ 4 }$$
    and $$ { A }_{ 2 }=\dfrac { \pi { d }_{ 2 }^{ 2 } }{ 4 }$$
    $$ \therefore \dfrac { { A }_{ 1 } }{ { A }_{ 2 } } =\dfrac { { d }_{ 1 }^{ 2 } }{ { d }_{ 2 }^{ 2 } } ={ \left( \dfrac { { d }_{ 1 } }{ { d }_{ 2 } }  \right)  }^{ 2 }$$
    $$L=2m$$
    Let $$\Delta l$$ be the extension produced in each wire.
    Let $$F=$$ tension produced in each wire.
    $$\therefore $$ From the relation, $$Y=\dfrac { stress }{ strain }$$, we get
    Strain for copper wire $$ =\dfrac { { F }/{ { A }_{ 1 } } }{ { Y }_{ 1 } }$$ and 
    Strain for iron wire $$ =\dfrac { { F }/{ { A }_{ 2 } } }{ { Y }_{ 2 } }$$
    As the bar is supported symmetrically, the two strains are equal
    $$ \dfrac { F }{ { A }_{ 1 }{ Y }_{ 1 } } =\dfrac { F }{ { A }_{ 2 }{ Y }_{ 2 } }$$
    $$ \Rightarrow { A }_{ 1 }{ Y }_{ 1 }={ A }_{ 2 }{ Y }_{ 2 }\Rightarrow \dfrac { { A }_{ 1 } }{ { A }_{ 2 } } =\dfrac { { Y }_{ 2 } }{ { Y }_{ 1 } } $$
    $$\Rightarrow \dfrac { { \pi { d }_{ 1 }^{ 2 } }/{ 4 } }{ { \pi { d }_{ 2 }^{ 2 } }/{ 4 } } =\dfrac { { Y }_{ 2 } }{ { Y }_{ 1 } }$$
    $$ \Rightarrow \dfrac { { d }_{ 1 } }{ { d }_{ 2 } } =\sqrt { \dfrac { { Y }_{ 2 } }{ { Y }_{ 1 } }  } =\sqrt { \dfrac { 190\times { 10 }^{ 9 } }{ 110\times { 10 }^{ 9 } }  }$$
    $$ \dfrac { { d }_{ 1 } }{ { d }_{ 2 } } =1.31$$
    $$\Rightarrow { d }_{ 1 }:{ d }_{ 2 }=1.31:1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now