Given that:
$$\underset {2.2g}{A(ROH)}+CH_3MgI \rightarrow \underset {560mL\ at\ STP}{CH_4}$$
$$A(ROH) \overset {(i)H^+(ii)Ozonolysis}{\rightarrow} B(ketone)+C$$
$$B+NH_2OH \rightarrow \underset {19.17N}{O(oxime)}$$
$$A(ROH) \overset {[O]}{\rightarrow} D(ketone$$
560 mL of $$CH_4$$ at STP:
number of moles of $$CH_4$$, n=560/22400=0.025 mol
1 mol of $$CH_4$$ will be obtained by reaction of 1 mol of $$CH_3MgI$$ with 1 mol of A
thus 0.025 mol of $$CH_4$$ is obtained from 0.025 mol of A
if 0.025 mol of A=2.2g
mass of 1 mol of A=2.2/0.025=88g/mol
Molecular formula of an alcohol=$$C_nH_{2n+1}OH$$
molar mass of alcohol=12n+2n+1+16+1
For A, molar mass=88,
thus, 12n+2n+1+16+1=88
and n=5
Thus A=$$C_5H_{11}OH$$
Since A on dehydration will form an alkene which on ozonolysis gives a ketone. Therefore the alkene formed should have two alkyl groups attached on one of the doubly bonded carbon so as to get a ketone. Thus possible structure of alkenes are:
$$CH_2={ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } -CH_2-C{ H }_{ 3 }$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =CH-C{ H }_{ 3 }$$
Thus, possible structure of A are:
$$\overset { \overset { OH }{ | } }{C}H_2-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } -CH_2-C{ H }_{ 3 }$$ OR $$C{ H }_{ 3 }-\overset { \overset { OH }{ | } }{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } -CH_2-C{ H }_{ 3 }$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { OH }{ | } }{C}H-C{ H }_{ 3 }$$
Thus possible B are:
$$O={ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } -CH_2-C{ H }_{ 3 }$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =O$$
and corresponding oxime are:
$$HON={ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } -CH_2-C{ H }_{ 3 }$$=X
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =NOH$$=Y
percent N in X is:(mass of N/molar mass of X)$$ \times 100=\frac {14}{(12 \times 4+9+16+14)} \times 100=16.1$$%
percent N in Y is(:mass of N/molar mass of Y)$$ \times 100=\frac {14}{(12 \times 3+7+16+14)} \times 100=19.18$$%
Therefore according to given data oxime obtained is $$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =NOH$$
from ketone =B= $$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =O$$
and possible alcohol are:
$$C{ H }_{ 3 }-\overset { \overset { OH }{ | } }{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } -CH_2-C{ H }_{ 3 }$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { OH }{ | } }{C}H-C{ H }_{ 3 }$$
Given that A gives ketone D on oxidation and with same number of carbons, thus it can only be a secondary alcohol as tertiary alcohol is resistant to oxidation. Thus A can only be:
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { OH }{ | } }{C}H-C{ H }_{ 3 }$$
overall reaction can be represented as:
$$\underset {2.2g}{C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { OH }{ | } }{C}H-C{ H }_{ 3 }}+CH_3MgI \rightarrow \underset {560mL\ at\ STP}{CH_4}$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { OH }{ | } }{C}H-C{ H }_{ 3 } \overset {(i)H^+(ii)Ozonolysis}{\rightarrow} C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =O+O=CHCH_3$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =O+NH_2OH \rightarrow \underset {19.17N}{C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } } =NOH}$$
$$C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { OH }{ | } }{C}H-C{ H }_{ 3 } \overset {[O]}{\rightarrow}C{ H }_{ 3 }-{ \underset { \underset { C{ H }_{ 3 } }{ | } }{ C } }H -\overset { \overset { O }{ || } }{C}-C{ H }_{ 3 } $$