Self Studies

Electrochemistry Test - 55

Result Self Studies

Electrochemistry Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The figure shows a car bumper coated with chromium.

    Why are car bumpers often coated with chromium?

    Solution
    Car bumpers are coated with chromium because chromium forms an oxide layer and helps in the prevention of rust formation and corrosion.
    Hence, option A is correct.
  • Question 2
    1 / -0
     1 faraday is defined as:
    Solution
    1 mol of electron $$\approx 96500 \  C$$ or 1 faraday.
  • Question 3
    1 / -0
    Which cell involves spontaneous oxidation and reduction?
    Solution

  • Question 4
    1 / -0
    The given diagram shows an electrochemical cell in which the respective half cells contain aqueous 1.0 M solutions of the salts $$XCl_2$$ and $$YCl_3$$. Given that, 

    $$3X_{(s)} + 2Y^{3+}_{(aq)} \rightarrow 3X^{2+}_{(aq)} + 2Y_{(s)},\ E_{cell}> 0$$

    Which of the following statement(s) is/are correct?

    Solution

    Oxidation occurs at the electrode X which is the anode and it has negative polarity.
    Anode: $$X \rightarrow X^{+2}+2e^-$$

    Cathode: $$Y^{3+}+3e^-\rightarrow Y$$

    Here, the electron is flowing from X to Y.

    Option D is correct.

  • Question 5
    1 / -0
    The concentration of potassium ions inside a biological cell is at least twenty times higher than the outside. The resulting potential difference across the cell is important in several processes such as transmission of nerve impulses and maintaining the ion balance. A simple model for such a concentration cell involving a metal M is:
    $$\mathrm{M}(\mathrm{s})|\mathrm{M}^{+}(\mathrm{a}\mathrm{q};0.05\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{r})||\mathrm{M}^{+}(\mathrm{a}\mathrm{q})$$ , 1 $$\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{r})|\mathrm{M}(\mathrm{s})$$
    For the above electrolytic cell the magnitude of the cell potential $$|\mathrm{E}_{\mathrm{c}\mathrm{e}ll}|=70\mathrm{m}\mathrm{V}$$.

    For the above cell:
    Solution
    $$\mathrm{M}(\mathrm{s})+\mathrm{M}{(\mathrm{a}\mathrm{q})1\mathrm{M}}^{+}\rightarrow
    \mathrm{M}{(\mathrm{a}\mathrm{q})0.05\mathrm{M}}^{+}+\mathrm{M}(\mathrm{s})$$

    According to Nernst equation,

    $$\displaystyle\mathrm{E}_{\mathrm{c}\mathrm{e}ll}=0-\frac{2.303\mathrm{R}\mathrm{T}}{\mathrm{F}}\log\frac{\mathrm{M}_{05\mathrm{M}}^{+}}{\mathrm{M}_{1\mathrm{M}}^{+}}$$$$=0-\displaystyle \frac{2.303\mathrm{R}\mathrm{T}}{\mathrm{F}}\log(5\times 10^{-2})$$$$=+\mathrm{v}\mathrm{e}$$

    Hence, $$|\mathrm{E}_{\mathrm{c}\mathrm{e}ll}|=\mathrm{E}_{\mathrm{c}\mathrm{e}ll}=0.70\mathrm{V}$$ and $$\Delta \mathrm{G}<0$$ for the feasibility of the reaction.


    Option B is correct.
  • Question 6
    1 / -0

    What is $$E_{RP}^0$$ for the reaction : $$C{u^{2 + }} + 2e\xrightarrow{{}}Cu$$ in the half cell $$P{t_{{S^{2 - }}/CuS/Cu}}$$ if $$E_{C{u^{2 + }}/Cu}^0$$ is 0.34 V and $$K_{sp}$$ of $$CuS=10^{-35}$$ ?

  • Question 7
    1 / -0
    In a voltaic cell, if iron and silver electrodes are connected with each other then current flows:
    Solution
    In a voltaic cell, if iron and silver electrodes are connected with each other then current flows from silver to iron outside the cell.
  • Question 8
    1 / -0
    The electrode potentials for $$Cu^{2+}_{(aq)} + e^{-} \rightarrow Cu_{(aq)}^{+}$$ and $$Cu_{(aq)}^{+} + e^{-} \rightarrow Cu_{(s)}$$
    Are $$+0.15 V$$ and $$+0.50 V$$ respectively.
    The value of $$E_{Cu^{2+}/Cu}^{\circ}$$ will be
    Solution
    Hint: Gibb's Free energy ($$\Delta G^{\circ}$$) is an additive property.

    Step 1 :
    By question,
    $$Cu^{2+}_{(aq)} + e^- \rightarrow Cu^+_{(aq)} \Rightarrow(1)$$ ;   $$E^{\circ}_1 =+0.15\ V$$
    $$Cu^+_{(aq)} + e^- \rightarrow Cu_{(s)} \Rightarrow(2)$$ ;   $$E^{\circ}_2 = +50\ V$$
    $$Cu^{2+}_{(aq)} + 2e^- \rightarrow Cu_{(s)} \Rightarrow(3)$$ ;  $$E^{\circ}_3 =\ ?\ V$$

    Formula of Gibb's free energy for Galvanic cell,
    $$\Delta G^{\circ} = -nFE^{\circ}$$

    Step 2:
    Calculation of $$E^{\circ}_{Cu^{+2}/Cu}$$:
    By adding equation $$(1)$$ and $$(2)$$, we get equation $$(3)$$ -

    $$Cu^{2+}_{(aq)} + e^-\ \  \rightarrow Cu^+_{(aq)} $$
    $$\underline{Cu^+_{(aq)} + e^-\ \ \rightarrow Cu_{(s)}}$$
    $$Cu^{2+}_{(aq)} + 2e^- \rightarrow Cu_{(s)}$$

    Now, $$\Delta G^{\circ}_3  =\Delta G^{\circ}_1 + \Delta G^{\circ}_2 $$

    $$-nFE^{\circ}_3 = -nFE^{\circ}_1 + -nFE^{\circ}_2$$

    $$-nFE^{\circ}_3 = -F(nE^{\circ}_1 + nE^{\circ}_2)$$

    $$2\times E^{\circ}_3 = (1\times 0.15 + 1\times 0.50)$$

    $$2\times E^{\circ}_3 = 0.65$$

    $$E^{\circ}_3 = \dfrac{0.65}{2}$$

    $$E^{\circ}_3 = 0.325\ V.$$

    Final Step: Correct answer - (B) $$0.325\ V.$$
  • Question 9
    1 / -0
    In a daniel cell, if $$A(E^o = -0.76 \ C)$$ and $$B(E^o = -2.36 \ V)$$ half cells are taken then:
    Solution
    Daniel cell converts chemical energy into electrical energy. Lower standard reduction potential is of anode and cathode has higher standard reduction potential. Emf of Daniel cell equals E$$_{red. (cathode)}$$ - E $$_{ red. (anode)}$$. Emf of cell has to be greater than zero for working of cell.
  • Question 10
    1 / -0
    At 300K, $$\Delta$$H for the reaction $$Zn(s) + 2AgCl \rightarrow ZnCl_2 + 2Ag$$, is $$- 218$$ kJ/mol while the emf of the cell was $$1.015V$$. $$(\dfrac{dE}{dT})_p$$ of the cell is :
    Solution
    $$\Delta H = nF(\dfrac{dE}{dT})_pT-nFE_{cell}$$

    $$-218\times 1000=2\times 96500\times 300(\dfrac{dE}{dT})_p-2\times 96500\times 1.015$$

    $$(\dfrac{dE}{dT})_p=-3.81\times 10^{-4}VK^{-1}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now