Self Studies

Electrochemistry Test - 61

Result Self Studies

Electrochemistry Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Calculate the potential of an indicator electrode, which originally contained $$ 0.1 M \ MnO_4^- $$ and $$ 1.72 M \ H^+ , $$ and was treated with $$Fe^{2+} , $$ necessary to reduce 90% of $$ KMnO_4 $$ to $$Mn^{2+}$$. 

    Given: $$[E^0_{MnO_4^-} /_{ Mn^{+2} } = 1.51 V] $$
    Solution

  • Question 2
    1 / -0
    What will be $$\Delta H$$ for the reaction; $$Ag(s)+\dfrac{1}{2}Hg_2Cl_2(s)\rightarrow AgCl(s)+Hg(l)$$ at $$25^0c$$, if this reaction can be conducted in a cell for which the emf = 0.0455 volt at this temperature with temperature coefficient $$3.389\times10^{-4} volt\, deg^{-1}$$?
    Solution
    $$Ag\left( s \right) +1/2{ Hg }_{ 2 }{ Cl }_{ 2 }\left( s \right) \longrightarrow AgCl\left( s \right) +Hg\left( l \right) $$
    $$E=0.0455$$ volt        $$\dfrac { dE }{ dT } =3.389\times { 10 }^{ -4 }$$Volt $${ deg }^{ -1 }$$
    We know that, $$-nFE=\Delta H-nFT\left( \dfrac { dE }{ dT }  \right) $$
    $$\Rightarrow \quad E=-\dfrac { \Delta H }{ nF } +T\left( \dfrac { dE }{ dT }  \right) $$
    $$\Rightarrow \quad 0.0455=-\dfrac { \Delta H }{ 1\times 96485 } +298\times 3.389\times { 10 }^{ -4 }$$
    $$\Rightarrow \quad \Delta H=+5354.16J=+1280Cal$$
  • Question 3
    1 / -0
    The density of copper is $$ 8 gm/cc.$$ Number of coulumbs required to plate an area of $$ 10 cm \times 10 cm $$ on both sides to a thickness of $$10^{-2} cm $$ using $$ CuSO_4$$ solution as electrolyte is:
  • Question 4
    1 / -0
    Consider the following half-cell reactions and associated standard half-cell potentials and determine the maximum voltage that can be obtained by combination resulting in spontaneous processes:
    $$AuBr_{4}^{-}(aq) + 3e^{-} \rightarrow Au(s) + 4Br^{-}(aq); E^{\circ} = -0.86\ V$$
    $$Eu^{3+}(aq) + e^{-} \rightarrow Eu^{2+}(aq); E^{\circ} = -0.43\ V$$
    $$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s); E^{\circ} = -0.14\ V$$
    $$IO^{-}(aq) + H_{2}O(l) + 2e^{-}\rightarrow I^{-}(aq) + 2OH^{-}(aq); E^{\circ} = + 0.49\ V$$
    Solution
    $$\begin{array}{l} AuBr_{ 4 }^{ - }\left( { aq } \right) +3{ e^{ - } }\to Au\left( s \right) +4B{ r^{ - } }\left( { aq } \right) ;\, \, E^{ \circ  }=-0.86V\to Anode \\ I{ O^{ - } }\left( { ar } \right) +{ H_{ 2 } }O\left( l \right) +2{ e^{ - } }\to { I^{ - } }\left( { aq } \right) +2O{ H^{ - } }\left( { aq } \right) ;E^{ \circ  }=+0.49\to cathode \\ E{ ^{ \circ  }_{ cell } }=E{ ^{ \circ  }_{ cathode } }-E{ ^{ \circ  }_{ anode } }\Rightarrow 0.49-\left( { -0.86 } \right) \Rightarrow +1.35V \end{array}$$
  • Question 5
    1 / -0
    $$E_{Fe^{+3}/ Fe^{+2}}^{0} = +0.77\ V; E_{Fe^{+3}/ Fe}^{0} = -0.036\ V$$. What is the value of $$E_{Fe/ Fe^{+2}}^{0}$$ ?
    Solution

  • Question 6
    1 / -0
    Consider the half-cell reduction reactions :
    $${ Mn }^{ 2+ }+{ 2e }^{ - }\rightarrow Mn,{ E }^{ o  }=-1.18\ V$$
    $${ Mn }^{ 2+ }\rightarrow { 2n }^{ 3+ }+{ e }^{ - },{ E }^{ o }=-1.51\ V$$
    The $${ E }^{ o }$$ for the reaction $${ 3Mn }^{ 2+ }\rightarrow { Mn }^{ 0 }+{ 2Mn }^{ 3+ }$$ and possibility of the forward reaction are respectively:
    Solution
    The standard electrode potential of reaction can be calculated as,

    $$E_{ 0 }=E_{ R }−E_{ P }$$

     Where, $$E_{ R }$$ is the SRP of the reactant, $$E_{ P }$$is the SRP of the product.

    $${ Mn }^{ 3+ }→Mn^{ 2+ }$$this reaction takes place with  the $$E_{ 0 }-1.51 V$$

    $$Mn^{ 2+ }→Mn$$ this takes place with$$E_{ 0 } -1.18 V$$

    $$E_{ 0 }=−1.51 V−1.81 V$$

    $$=-2.69V$$

    and the reaction is will not occurs due to spontaneity.
  • Question 7
    1 / -0
    A current of $$i$$ ampere was passed for $$t$$ sec, through three calls $$P,Q$$ and $$T$$ connected in series. These contain respectively silver nitrate, mercuric nitrate, and mercurous nitrate. At the cathode of the cell $$P,0.216g$$ of $$Ag$$ was deposited. The weights of mercury deposited in the cathode of $$Q$$ and $$R$$ respectively are: (at wt. of $$Hg=200.59$$)
    Solution
    Cells are connected in series therefore same amount of current will Pass through them:
    Faraday's second law:
    $$\dfrac{W_1}{W_2}=\dfrac{E_1}{E_2}$$
     (a) For Mercuric nitrate $$(Hg^{2+})$$
    $$\dfrac{W_1}{(W_2)Ag}=\dfrac{E_1}{(E_2)Ag}$$
    $$W_1=\dfrac{200.59}{2\times 108 }\times 0.216$$
           $$=0.2006g$$

    (b) For mercurous nitrate $$(Hg^+)$$
    $$\dfrac{W_1}{(W_2)Ag}=\dfrac{E_1}{(E_2)Ag}$$               $$(\therefore E_{Ag}=108)$$
    $$W_1=\dfrac{200.59}{108}\times 0.216$$
           $$=0.4012g$$
  • Question 8
    1 / -0
    The time required for a current of $$3$$ amp. to decompose electrolytically $$18$$g of $$H_2O$$ is:
    Solution
    According to Faraday first law $$W \propto Q$$
                                             and $$W = \dfrac{Ewt\ } {F}$$
    $$Ewt.=$$ Equivalent weight
    $$F =$$  Faraday constant
    $$W=$$ weight
    $$Q =$$ $$current(i) \times time(t)$$

             $$\dfrac {W} {Ewt} = \dfrac {it} {F}$$
             
            $$\dfrac {18\times2}{18} =\dfrac {3\times t} {96500}     (Ewt = \dfrac{M.w.}{V.F.})$$
              
             $$\dfrac{2\times 96500}{3\times 3600} = t$$
             
             $$ t  =64333s \approx 18hr$$
    The correct option is [A].
  • Question 9
    1 / -0
    Electrolysis can be used to determine atomic masses. A current of $$0.550\ A$$ deposits $$0.55$$. If a certain metal in $$100\ minutes$$. Calculate the atomic mass of the metal if eq. mass $$-$$ mole mass $$/ 3$$.
    Solution
    According to Faraday's law of Electrolysis
    $$W=(\cfrac { M }{ nf } ).\cfrac { I.t }{ F } $$
    $$0.55ℊ=(\cfrac { M }{ 3 } )\times 0.550\times (100\times 60)s$$
    $$M=48.25ℊ$$
    Thus atomic mass of metal is $$48.25$$
  • Question 10
    1 / -0
    Solution A,B and C of the same strong electrolyte offered resistances of $$50\ \Omega,\  100\ \Omega,\  and\ 150\ \Omega$$ in a given conductivity cell. The resistance observed if they are mixed in a volume proportion which is reciprocal of their resistances and tested in the same conductivity cell would be:
    Solution
    Let value be $$v_1,\ v_2$$ and $$v_3$$
    $$\dfrac {v_1}{R_1}+\dfrac {v_2}{R_2}+\dfrac {v_3}{R_3}=\dfrac {v_1 +v_2 +v_3}{Req}$$
    $$R_1=52\ \Omega\ R_2=100\ \Omega \ R_3=150\ \Omega$$
    $$v_1=\dfrac {1}{50}\ v_2=\dfrac {1}{100}\ v_3=\dfrac {1}{150}$$
    $$\dfrac {v_1}{R_1}+\dfrac {v_2}{R_2}+\dfrac {v_3}{R_3}=\dfrac {v_1 +v_2 +v_3}{Req}$$
    $$\dfrac {1}{50\times 50}+\dfrac {1}{100\times 100}+\dfrac {1}{150\times 150}=\dfrac {\dfrac {1}{50}+\dfrac {1}{100}+\dfrac {1}{150}}{Req}$$
    $$\dfrac {36+9+4}{150\times 50\times 4}=\dfrac {\dfrac {6+3+2}{900}}{Req}$$
    $$Req\ \dfrac {49}{150\times 150\times 4}=\dfrac {11}{300}$$
    $$Req\ =\dfrac {3300}{49}=67.3\ \Omega$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now