Self Studies

Chemical Kinetics Test - 35

Result Self Studies

Chemical Kinetics Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${ T }_{ 50\% }$$ of first order reaction is $$10$$ min. Starting with $$10$$ $$mol$$ $${ L }^{ -1 }$$, rate after $$20$$ min is:
    Solution
    $${ t }_{ 1/2 }=10min\\ k=\cfrac { 0.693 }{ { t }_{ 1/2 } } =\cfrac { 0.693 }{ 10 } mi{ n }^{ -1 }$$
     Now,
    $$ A={ A }_{ o }{ e }^{ -kt }\\ A=10.{ e }^{ \cfrac { 0.693 }{ 10 } .20 }$$
    $$ =10{ e }^{ -2\times 0.693 }\longrightarrow$$ Concentration at $$20min.$$
    So, 
    $$ v=kA=\cfrac { 0.693 }{ 10 } .{ 10e }^{ -2\times 0.693 }\\ =0.0693 \times { 10e }^{ -2\times 0.693 } \\ =0.0693\times 2.5mol\ { L }^{ -1 }mi{ n }^{ -1 }$$
  • Question 2
    1 / -0
    A substance reacts with initial concentration of $$a$$ $$mol$$ $${ dm }^{ -3 }$$ according to zero order kinetics. The time it takes for the completion of the reaction is: ($$k=$$ rate constant)
    Solution

    Since rate constant of zero order reaction is $$[A]=[A]_o−kt$$
    $$\implies t = \frac{[A]_o−[A]}{k} $$
    $$ \implies t = \frac{a - 0}{k}$$
    $$ \implies t =\frac{a}{k}$$

  • Question 3
    1 / -0
    Under the same reaction conditions, initial concentration of $$1.386$$ $$mol$$ $${ dm }^{ -3 }$$ of a substance becomes half in $$40$$ seconds and $$20$$ seconds through first order and zero order kinetics respectivley. Ratio $$\left( \dfrac { { k }_{ 1 } }{ { k }_{ 0 } }  \right) $$ of the rate constant for first order $$\left( { k }_{ 1 } \right) $$ and zero order $$\left( { k }_{ 0 } \right) $$ of the reaction is:
    Solution
    $${ t }_{ { 1 }/{ 2 } }=\dfrac { 0.693 }{ { k }_{ 1 } } $$,      $${ t }_{ { 1 }/{ 2 } }=\dfrac { { a }_{ 0 } }{ 2{ k }_{ 0 } } $$
    $$40=\dfrac { 0.693 }{ { k }_{ 1 } } $$,           $$20=\dfrac { 1.386 }{ 2{ k }_{ 0 } } =\dfrac { 0.693 }{ { k }_{ 0 } } $$
    $$\dfrac { 20 }{ 40 } =\dfrac { { 0.693 }/{ { k }_{ 0 } } }{ { 0.693 }/{ { k }_{ 1 } } } =\dfrac { { k }_{ 1 } }{ { k }_{ 0 } } $$
    $$\dfrac { { k }_{ 1 } }{ { k }_{ 0 } } =0.5\dfrac { { sec }^{ -1 } }{ mol{ dm }^{ -3 }{ sec }^{ -1 } } =0.5{ mol }^{ -1 }{ dm }^{ 3 }$$
  • Question 4
    1 / -0
    The decomposition of $$HI$$ on the surface of gold is:
    Solution

  • Question 5
    1 / -0
    A drop of solution (volume $$0.05$$ $$mL$$) contains $$3\times { 10 }^{ -6 }$$ mole of $${ H }^{ + }$$. If the rate constant of disappearance of $${ H }^{ + }$$ is $${ 10 }^{ 7 }$$ $$mol$$ $${ litre }^{ -1 }$$ $${ sec }^{ -1 }$$, how long would it take for $${ H }^{ + }$$ in the drop to disappear?
    Solution
    $$k={ 10 }^{ 7 }{ molL }^{ -1 }{ sec }^{ -1 }\\ [{ H }^{ + }]=\cfrac { 3\times { 10 }^{ -6 } }{ 0.05\times { 10 }^{ -3 } } { molL }^{ -1 }=\cfrac { 3 }{ 5 } \times { 10 }^{ -1 }{ mol }L^{ -1 }\\ \therefore \ln { \left( \cfrac { { A }_{ o } }{ A }  \right)  } =kt\\ { t }_{ 99\% }=\cfrac { \ln { \left( \cfrac { { A }_{ o } }{ A }  \right)  }  }{ k } \\ =\cfrac { \ln { \left( \cfrac { 3/5\times { 10 }^{ -1 } }{ 3/5\times { 10 }^{ -3 } }  \right)  }  }{ { 10 }^{ 7 } } \\ =9.212\times { 10 }^{ -3 }sec\\ So,\\ v=k[{ H }^{ + }]=0.6\times { 10 }^{ -1 }\times { 10 }^{ 7 }\\ =0.6\times { 10 }^{ 6 }\\ =6\times { 10 }^{ 5 }{ mol }^{ 2 }{ L }^{ -1 }{ s }^{ -1 }\\ \therefore t=6\times { 10 }^{ -9 }sec$$ for $$\cfrac { 3 }{ 5 } \times { 10 }^{ -1 }mol{ L }^{ -1 }$$
  • Question 6
    1 / -0
    The rate constant of a reaction is found to be $$3\times { 10 }^{ -3 }$$ $$mol$$ $${ L }^{ -1 }$$ $${ min }^{ -1 }$$. The order of the reaction is:
    Solution

    Since the rate constant of a zero-order reaction is Rate = K.

    The unit of rate constant will be $$mol . L^{-1} min^{-1}.$$

  • Question 7
    1 / -0
    The hydrolysis of ethyl acetate is a reaction of:
    $$C{ H }_{ 3 }COO{ C }_{ 2 }{ H }_{ 5 }+{ H }_{ 2 }O\xrightarrow [  ]{ \quad { H }^{ + }\quad  } C{ H }_{ 3 }COOH+{ C }_{ 2 }{ H }_{ 5 }OH$$
    Solution
    $$\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  { H }^{ + }\\ { CH }_{ 3 }{ COOC }_{ 2 }{ H }_{ 5 }+{ H }_{ 2 }O\longrightarrow { CH }_{ 3 }COOH+{ C }_{ 2 }{ H }_{ 5 }OH$$
    In the above reaction medium of reaction is water which will be in excess, hence it can be avoided in rate expression, thus rate will be given as
             $$Rate=K\left[ { CH }_{ 3 }{ COOC }_{ 2 }{ H }_{ 5 } \right] $$
    Hence it is a $${ 1 }^{ st }$$ order reaction.
  • Question 8
    1 / -0
    Graph between the concentration of the product '$$x$$' and time '$$t$$' for $$A\rightarrow B$$ is given above.
    The graph between $$-\dfrac { d\left[ A \right]  }{ dt } $$ and time $$'t'$$ will be of the type:

    Solution
    For a zero order reaction
    Rate of reaction=-$$\frac{d[A]}{dt}$$=$$K(a-x)^0$$=K
     So the correct answer is (C) because there is no change in rate w.r.t time.
  • Question 9
    1 / -0
    For a zero order reaction, $$A\longrightarrow P$$, $${ t }_{ { 1 }/{ 2 } }$$ is: 
    ($$k$$ is the rate constant, $$[A]_0$$ is the initial concentration of $$A$$)
    Solution
    For zero order 
    $$ kt=a\\ { t }_{ 1/2 }=\cfrac { { a }_{ o } }{ 2k } =\cfrac { { \left[ A \right]  }_{ o } }{ 2k } $$
  • Question 10
    1 / -0
    Following is the graph between $$\log{{ t }_{ { 1 }/{ 2 } }}$$ and $$\log { a } $$ ($$a=$$ initial concentration) for a given reaction at $${ 27 }^{ o }C$$. Hence, order of the reaction is:

    Solution
    $$\cfrac { 1 }{ { a }^{ n-1 } } =\cfrac { 1 }{ { a }_{ 0 }^{ n-1 } } +(n-1)kt$$
     for $$n=0$$
    $$ \cfrac { 1 }{ { a }^{ -1 } } =\cfrac { 1 }{ { a }_{ 0 }^{ -1 } } +(-1)kt\\ a={ a }_{ o }-kt\\ { kt }_{ 1/2 }=\cfrac { { a }_{ o } }{ 2 } \\ \log { { (t }_{ 1/2 })= } \log { ({ 0 }_{ o }) } -\log { \left( \cfrac { 1 }{ 2k }  \right)  } $$
     So,
    $$\log { { (t }_{ 1/2 }) } =\log { ({ 0 }_{ o }) } +\log { (2k) } $$
    Which is a straight line as given.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now