Self Studies

Chemical Kinetics Test - 36

Result Self Studies

Chemical Kinetics Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Decomposition of $${ H }_{ 2 }{ O }_{ 2 }$$ is a first order reaction. A $$16$$ volume solution of $${ H }_{ 2 }{ O }_{ 2 }$$ of half life $$30$$ min is present at start. When will the solution become one volume?
    Solution
    Given that $$a_0=16V$$, $$a_t=1V$$, $$t_{1/2}=\frac{In2}{k} $$=30 min
    For 1st order reaction, $$t=\frac{1}{k} In\frac{a_0}{a_t} $$
    $$t=\frac{t_{1/2}}{In2} .In16$$=$$4t_{1/2}=120$$ min
  • Question 2
    1 / -0
    For a 1st order reaction of the form, $$A\xrightarrow [  ]{ \quad k \quad  } B$$, the correct representations are:

    Solution
    We know, $$\ln { \dfrac { \left[ A \right]  }{ { \left[ A \right]  }_{ 0 } }  } =-kt$$           ...(i)
    It shows that $$\ln { \dfrac { \left[ A \right]  }{ { \left[ A \right]  }_{ 0 } }  } $$ decreases linearly with increase in time '$$t$$'.
    From equation (i)      $$\dfrac { \left[ A \right]  }{ { \left[ A \right]  }_{ 0 } } =\dfrac { 1 }{ { e }^{ kt } } $$          ...(ii)
    This equation shows that the ratio $$\dfrac { \left[ A \right]  }{ { \left[ A \right]  }_{ 0 } } $$ will also decrease with increase in time but exponentially.
  • Question 3
    1 / -0
    The time for half-life period of a certain reaction, $$A\rightarrow $$ Product, is $$1$$ hour, when the initial concentration of the reactant '$$A$$' is $$2$$ $$mol$$ $${ L }^{ -1 }$$. How much time does it take for its concentration to come from $$0.50$$ to $$0.25$$ $$mol$$ $${ L }^{ -1 }$$ if it is a zero order reaction?
    Solution
    $$\dfrac { { t }_{ 1 } }{ { t }_{ 2 } } ={ \left( \dfrac { { a }_{ 2 } }{ { a }_{ 1 } }  \right)  }^{ n-1 }$$
    $$\dfrac { 1 }{ { t }_{ 2 } } ={ \left( \dfrac { 0.5 }{ 2 }  \right)  }^{ 0-1 }$$
    $${ t }_{ 2 }=0.25 hr$$
  • Question 4
    1 / -0
    In the reaction, $$A+B\longrightarrow C+D$$, the rate $$\left( \dfrac { dx }{ dt }  \right) $$ when plotted against time '$$t$$' gives a straight line parallel to time axis and at some time $$'t'$$, $$\dfrac{dx}{dt}=k$$. The order and rate of reaction will be:
    Solution
    A straight line parallel to time axis indicate that the rate is constant. This is the case for zero order reaction.
    $$\frac{dx}{dt} =k$$
    rate of the reaction=k
  • Question 5
    1 / -0
    The reaction, $$A\xrightarrow {  \quad k \quad  } $$ Product, is zero order while the reaction, $$B\xrightarrow {  \quad k\quad } $$ Product, is first order reaction. For what initial concentration of $$A$$ are the half lives of the two reactions equal?
    Solution
    For zero order reaction,
    $$x=kt$$
    $$\therefore \dfrac { a }{ 2 } =k\times { t }_{ { 1 }/{ 2 } }$$, i.e., $${ t }_{ { 1 }/{ 2 } }=\dfrac { a }{ 2k } $$               ....(i)
    For first order reaction,
    $${ t }_{ { 1 }/{ 2 } }=\dfrac { \log _{ e }{ 2 }  }{ k } $$              ....(ii)
    From equations (i) and (ii), $$\dfrac { a }{ 2k } =\dfrac { \log _{ e }{ 2 }  }{ k }$$
                                               $$ a=\log _{ e }{ 4 } M$$
  • Question 6
    1 / -0
    Consider following two competing first order reactions:
    $$P\xrightarrow [  ]{ \quad { k }_{ 1 }\quad  } A+B;$$  $$Q\xrightarrow [  ]{ \quad { k }_{ 2 }\quad  } C+D$$
    If $$50$$% of the reaction of $$P$$ was completed when $$96$$% of $$Q$$ was completed, then the ratio $$\left( { { k }_{ 2 } }/{ { k }_{ 1 } } \right) $$ will be:
    Solution
    For $$50$$% completion of $$P$$:
    $$t=\dfrac { 0.693 }{ { k }_{ 1 } } $$      i.e., $${ k }_{ 1 }=\dfrac { 0.693 }{ t }$$             ....(i)
    For $$96$$% completion of $$Q$$:
    $$t=\dfrac { 2.303 }{ { k }_{ 2 } } \log { \left( \dfrac { 100 }{ 100-96 }  \right)  }$$
    $$\therefore { k }_{ 2 }=\dfrac { 2.303\times 1.398 }{ t } $$           .....(ii)
    Dividing equation (ii) by equation (i)
    $$\dfrac { { k }_{ 2 } }{ { k }_{ 1 } } =4.6$$
  • Question 7
    1 / -0
    Which of the following graphs is correct for the following reaction?
    $$C{ H }_{ 3 }-C{ H }_{ 2 }-CH=C{ H }_{ 2 }\xrightarrow [ { 300 }^{ o }C ]{ \quad { { H }_{ 2 } }/{ Ni }\quad  } C{ H }_{ 3 }-C{ H }_{ 2 }-C{ H }_{ 2 }-C{ H }_{ 3 }$$
    Solution
    Reaction involves adsorption on the surface of $$Ni$$ catalyst; hence it is a zero order reaction.
    $$a=2{ t }_{ { 1 }/{ 2 } }k$$              (for zero order)
    $$\log { a } =\log { { t }_{ { 1 }/{ 2 } } } +\log { 2k } $$
    $$Y=MX+C$$
    Here, slope $$M=1$$   i.e., $$\tan { \theta  } =1$$
    $$\therefore \theta ={ 45 }^{ o }$$
    Intercept $$C=\log { 2k } $$
  • Question 8
    1 / -0
    For a first-order reaction, $$A\longrightarrow $$ Products, the concentration of $$A$$ changes from $$0.1\ M$$ to $$0.025\ M$$ in $$40$$ minutes. The rate of reaction when the concentration of $$A$$ is $$0.01\ M$$, is:
    Solution
    $${ t }_{ 1/4 }=\cfrac { 2\ln { (2) }  }{ k } \\ k=\cfrac { 2\ln { (2) }  }{ { t }_{ 1/4 } } $$
    $$=\cfrac { 2\ln { (2) }  }{ 40 } mi{ n }^{ -1 }\\ \therefore v=k[A]$$
    $$=\cfrac { 2\ln { (2) }  }{ { t }_{ 1/4 } } \times 0.01$$
    $$=\cfrac { 2\ln { (2) }  }{ 40 } \times 0.01$$
    $$=3.47\times { 10 }^{ -4 }Mmi{ n }^{ -1 }$$
  • Question 9
    1 / -0
    The rate of a reaction at $$10$$ sec intervals are as follows:
    Time $$\left( sec \right) $$     Rate
    $$\left( mol\ { L }^{ -1 }{ sec }^{ -1 } \right) $$
               $$0$$$$4.8\times { 10 }^{ -2 }$$
              $$10$$$$4.79\times { 10 }^{ -2 }$$
             $$20$$$$4.78\times { 10 }^{ -2 }$$
             $$30$$$$4.81\times { 10 }^{ -2 }$$
    What will be the order of the reaction?
    Solution
    As observed from the given data, the rate of the reaction is nearly constant. This is possible for a zero order reaction, where rate of the reaction is equal to rate constant.
  • Question 10
    1 / -0
    The half-life period of a first order process is $$1.6$$min. It will be $$90\%$$ complete in :
    Solution
    For a first order reaction,
    $$k=\displaystyle\frac{2.303}{t}log\frac{a}{a-x}$$

    At half-time,
    $$x=\displaystyle\frac{a}{2}$$

    $$\therefore k=\displaystyle\frac{2.303}{1.6}\times log\frac{a}{\displaystyle a-\frac{a}{2}}$$

    $$=\displaystyle\frac{2.303}{1.6}\times log 2$$

    $$=\displaystyle\frac{2.303}{1.6}\times 0.3010$$

    $$=0.4332$$

    For $$90\%$$ completion,
    $$x=0.9$$a

    $$\therefore k=\displaystyle\frac{2.303}{t}log\frac{a}{a-0.9a}$$

    $$0.4332=\displaystyle\frac{2.303}{t}log\frac{a}{0.1a}$$

    $$=\displaystyle\frac{2.303}{t}log10$$

    $$=\displaystyle\frac{2.303}{t}\times 1$$

    $$t=\displaystyle\frac{2.303}{0.4332}$$

    $$=5.3$$min.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now