Self Studies

Chemical Kinetics Test - 57

Result Self Studies

Chemical Kinetics Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$A(g)\rightarrow B(g)+C(g)$$

    $$\dfrac {-d[A]}{dt}=k[A]$$

     At the start, the pressure is 100 mm and after 10 min, the pressure is 120 mm. Hence, rate constant $$(min^{-1})$$ is:
    Solution
                         $$A(g)\rightarrow B(g) + C(g)$$

    $$t=0$$                P            0           0        
    At time t           P-x          x            x

    Total pressure $$=P-x+x+x=120$$.
    $$P+x=120$$

    $$x=120-P=120-100=20.$$

    $$k=\dfrac {2.303}{t}log \dfrac {a}{a-x} $$

    $$\ k=\dfrac {2.303}{10} log \dfrac {100}{80}$$

    Hence, option C is correct.
  • Question 2
    1 / -0
    For the $$1^{st}$$ order reaction: $$A_{(g)}\rightarrow 2B_{(g)}+C_{(s)}$$, the value of $$t_{\frac {1}{2}}=24\ mins$$. The reaction is carried out by taking a certain mass of $$A$$ enclosed in a vessel in which it exerts a pressure of $$400\ mm\ Hg$$. The pressure of the reaction mixture after the expiry of $$48\ mins$$ will be:
    Solution

  • Question 3
    1 / -0
    The rate constant $$(k)$$ of a first-order reaction is $$0.0693\ min^{-1}$$. If we start with $$20\ mol\ L^{-1}$$, then it is reduced to $$2.5\ mol\ L^{-1}$$ in:
    Solution

  • Question 4
    1 / -0
    In the first order reaction the concentration of reactant decreases from $$1.0\ M$$ to $$0.25\ M$$ in $$20$$ minutes. The value of specific rate is:
    Solution
    $$\frac {2.303}{20} log \frac {2}{0.5}=0.06932$$.
  • Question 5
    1 / -0
    Calculate the half-life of the first-order reaction, $$C_2H_4O(g)\rightarrow CH_4(g)+CO(g)$$, if the initial pressure of $$C_2H_4O(g)$$ is 80 mm and the total pressure at the end of 20 minutes is 120 mm.
    Solution
    For first-order reaction,
    $$k=\dfrac {2.303}{t} log \dfrac {a}{a-x}$$

    $$=\dfrac {2.303}{20}\times log\dfrac {80}{40}$$

    $$=\dfrac {2.303}{20}\times 0.3010$$

    For half-life period,

    $$t_{\frac {1}{2}}=\dfrac {0.693}{k}=\dfrac {0.693\times 20}{2.303\times 3010}=20\ min$$

    Hence, option C is correct.
  • Question 6
    1 / -0
    A reaction that is of the first order with respect to reactant A has a rate constant 6 min$$^{-1}$$. If we start with [A]=0.5 mol L$$^{-1}$$, when would [A] reach the value of 0.05 mol L$$^{-1}$$?
    Solution
    We know that for first order kinetics:

    $$k=\dfrac {2.303}{t} log \dfrac {a}{a-x}$$

    or $$t=\dfrac {2.303}{6} log \dfrac {0.5}{0.05}=\dfrac {2.303}{6}=0.384\ min$$

    Hence, option A is correct.
  • Question 7
    1 / -0
    For the first order reaction $$A_{(g)}\rightarrow 2B_{(g)}+C_{(g)}$$, the initial pressure is $$P_A=90 mm$$ Hg, the pressure after 10 minutes is found to be 180 mm Hg. The rate constant of the reaction is:
    Solution
    $$A\rightarrow 2B+C$$
    P         0      0
    P-x     2x     x
    At equilibrium,
    $$180=P-x+2x+x$$

    $$180=90+2x$$

    $$2x=90, x=45$$

    $$k=\dfrac {2.303}{t} log \dfrac {P}{P-x}$$

    $$=\dfrac {2.303}{10} log\dfrac {90}{90-45}=\dfrac {2.303}{10} log 2=\dfrac {0.6932}{10}$$

    $$=0.6932=\dfrac {0.06932}{60}=1.1555\times 10^{-3} sec^{-1}$$.
  • Question 8
    1 / -0
    A certain zero order reaction has $$k=0.025\ M sec^{-1}$$ for the disappearance of A. What will be the concentration of A after 15 seconds if initial concentration is 0.5 M?
    Solution
    $$x=kt=0.025\times 15=0.375\ M$$
    Remaining concentration of $$A= 0.5-0.375$$
                                                   $$=0.125\ M$$
  • Question 9
    1 / -0
    In the first order reaction, the concentration of the reactant is reduced to 25% in one hour.The half-life period of the reaction is:
    Solution
    $$k=\frac {2.303}{t} log \frac {a}{a-x}$$
    $$k=\frac {2.303}{1} log \frac {100}{25}=\frac {2.303}{1} log 4=2.303\times 2\times 0.3010$$
    $$t_{\frac {1}{2}}=\frac {0.693}{k}\therefore t_{\frac {1}{2}}=0.5 hr$$.
  • Question 10
    1 / -0
    For a 1$$^{st}$$ order reaction (gaseous) (constant V, T) $$a A   \rightarrow (b - 1) B + 1 C$$ (with b > a) the pressure of the system rose by $$50 \left ( \frac{b}{a} - 1 \right )$$% in a time of 10 min. The half life of the reaction is therefore:
    Solution
                 $$aA    \rightarrow$$      (b -1) B   +   C
    $$t = 0;$$   $$P_0$$              0                0
    $$t= t;$$   $$P_0 - x$$   $$\frac{(b-1)x}{a}$$         $$\frac{x}{a}$$

    Total pressure $$=P_0  - x + \frac{b}{a} x = P_0 + \left ( \frac{b}{a} - 1 \right ) \frac{1}{2} P_0$$

                    $$P_0 + \left ( \frac{b}{a} - 1 \right ) x = P_0 + \left ( \frac{b}{a} - 1 \right ) \frac{P_0}{2}$$

                    $$x = \frac{P_0}{2}$$

                    $$P_A = P_0 - x = P_0 - \frac{P_0}{2} = \frac{P_0}{2}$$

                    $$P_A$$ reduces to half in 10 min.

    So, $$t_{1/2} = 10\ min.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now