$$2{ \mathrm{N} }_{ 2 }{ \mathrm{O} }_{ 5 }\longrightarrow \mathrm{4N}{ \mathrm{O} }_{ 2 }+{ \mathrm{O} }_{ 2 }$$
On decomposition of $$2$$ moles of $${ \mathrm{N} }_{ 2 }{ \mathrm{O} }_{ 5 }$$, $$4$$ moles of $$\mathrm{N}{ \mathrm{O} }_{ 2 }$$ and $$1$$ mole of $${ \mathrm{O} }_{ 2 }$$ are produced. Thus, the total pressure after completion corresponds to $$5$$ moles and initial pressure to $$2$$ moles.
Initial pressure of $${ \mathrm{N} }_{ 2 }{ \mathrm{O} }_{ 5 }$$, $${ \mathrm{p }}_{ 0 }=\dfrac { 2 }{ 5 } \times 584.5=233.8$$ mm Hg
After $$30$$ minutes, the total pressure $$=284.5$$ $$mm$$ $$Hg$$
$$\begin{matrix} 2{ N }_{ 2 }{ O }_{ 5 } \\ { p }_{ 0 }-2p \end{matrix}\begin{matrix} \longrightarrow \\ \end{matrix}\begin{matrix} 4N{ O }_{ 2 } \\ 4p \end{matrix}\begin{matrix} + \\ \end{matrix}\begin{matrix} { O }_{ 2 } \\ p \end{matrix}$$
or $${ p }_{ 0 }+3p=284.5$$
or $$3p=284.5-233.8=50.7$$ mm Hg
or $$p=\dfrac { 50.7 }{ 3 } =16.9$$ mm Hg
Pressure of $${ \mathrm{N} }_{ 2 }{ \mathrm{O} }_{ 5 }$$ after $$30$$ minutes $$=233.8-\left( 2\times 16.9 \right) $$
$$=200$$ mm Hg
$$\mathrm{k}=\dfrac { 2.303 }{ 30 } \log _{ 10 }{ \dfrac { 233.8 }{ 200.0 } } $$
$$=5.206\times { 10 }^{ -3 }{ \mathrm{min} }^{ -1 }$$
Hence, the correct option is $$\text{A}$$