$$\displaystyle Cl_2O_7 (g) \rightarrow Cl_2(g) + 3.5 O_2 (g) $$
Initial pressure of $$\displaystyle Cl_2O_7 = 0.62$$ atm
Equilibrium pressure of $$\displaystyle Cl_2O_7 = 0.62 - x$$ atm
Equilibrium pressure of $$\displaystyle Cl_2 = x$$ atm
Equilibrium pressure of $$\displaystyle O_2 = 3.5 x$$ atm.
Total equilibrium pressure $$\displaystyle = 0.62 - x + x + 3.5 x = 0.62 + 3.5 x = 1.88$$ atm
$$\displaystyle 3.5 x = 1.26$$
$$\displaystyle x = 0.36$$ atm
Hence the equilibrium pressure of $$\displaystyle Cl_2O_7 = 0.62 -x = 0.62 - 0.36 = 0.26$$ atm.
The rate constant of the reaction $$\displaystyle k = \dfrac {2.303}{t}log \dfrac {a}{a-x}$$
$$\displaystyle k = \dfrac {2.303}{55 \: sec} log \dfrac {0.62}{0.26} = 1.58 \times 10^{-2} /sec$$
After 100 sec,
$$\displaystyle 1.58 \times 10^{-2} = \dfrac {2.303}{100} log \dfrac {0.62}{a-x} $$
$$\displaystyle 0.6861 = log \dfrac {0.62}{a-x}$$
$$\displaystyle 4.854 = \dfrac {0.62}{a-x}$$
$$\displaystyle a-x = 0.1277$$
$$\displaystyle x = a - 0.1277 = 0.62 - 0.1277 = 0.4923$$
Total equilibrium pressure $$\displaystyle = 0.62 + 3.5 x = 0.62 + 3.5 (0.4923) = 2.33 $$ atm