Self Studies

Chemical Kinetics Test - 62

Result Self Studies

Chemical Kinetics Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Reaction $$A+B\longrightarrow C+D$$ follow's following rate law rate $$=k={ \left[ A \right]  }^{ \frac { 1 }{ 2 }  }{ \left[ B \right]  }^{ \frac { 1 }{ 2 }  }$$. Starting with initial conc. of one mole of A and B each, what is the time taken for amount  of A of become 0.25 mole. Given $$k = 2.31\times 10^{-3}  sec^{-1}$$.
    Solution
    $$A+B\longrightarrow C+D$$

    $$rate=k\left[ A \right] ^{ 1/2 }\left[ B \right] ^{ 1/2 }$$

    $$\displaystyle \frac { dx }{ dt } =k\sqrt { (a-x)(a-x) } $$

    $$ \displaystyle \frac { dx }{ dt } =k(a-x)$$

    $$ \Rightarrow t= \displaystyle \frac { 2.303 }{ k } \log_ { 10 } \left( \displaystyle \frac { a }{ a-x }  \right) $$

    $$ t= \displaystyle \frac { 2.303 }{ 2.31\times 10^{ -3 } } \log_ { 10 } \left( \displaystyle \frac { 1 }{ 0.25 }  \right) $$

     $$t=600\ sec.$$

    Hence, the correct option is $$\text{B}$$
  • Question 2
    1 / -0
    The gas phase decomposition of dimethyl ether follows first order kinetics.
    $$CH_3OCH_3(g)\, \rightarrow\, CH_4(g)\, +\, H_2(g)\, +\, CO(g)$$
    The reaction is carried out in a constant volume container at $$500^\circ C$$ and has a half life of 14.5 min. Initially, only dimethyl ether is present at a pressure of 0.40 atm. What is the total pressure of the system after 12 min? Assume ideal gas behaviour.
    Solution
    For first order reaction,
    Half life = $$\displaystyle \frac{0.693}{k}$$
    or 14.5 = $$\displaystyle \frac{0.693}{k}$$
    or k = $$\displaystyle \frac{0.693}{k}\, =\, 4.78\, \times\, 10^{-2}\, min^{-1}$$
    Also,
    $$\displaystyle k\, =\, \frac{2.303}{t} log \frac{A_0}{A_t}\, =\, \frac{2.303}{t} log \frac{P_0}{P}$$

    or $$\displaystyle \frac{0.693}{14.5}\, =\, \frac{2.303}{12} log \frac{0.40}{(0.40\, -\, x)}$$
    or x = 0.1746 atm
    Total pressure of container after 12 min is
    (0.40 - x) + x + x + x = 0.4 + 2x
    = 0.4 + 2 $$\times$$ 0.1746
    = 0.7492 atm
  • Question 3
    1 / -0
    Catalytic decomposition of nitrous oxide by gold at $$900^{0}C$$ at an initial pressure of 200 mm was 50 % in 53 min and 73 % in 100 min, the value of velocity constant is :
    Solution
    Case I:
    $$a\, \propto\, 200 mm$$
    $$x\, \propto\, 200\,\times\, \displaystyle \frac{50}{100}$$
    or $$x\, \propto\, 100 mm.$$

    $$t_{1/2}\,=\, 53 min.$$

    $$k_1\,=\, \displaystyle \frac{2.303}{t}\,log\,\frac{a}{a\,-\,x}$$

    $$k_1=\displaystyle \frac{2.303}{53} \,log\,\frac{200}{200 \,- \,100}\,=\, 1.308\,\times\,10^{-2}\,min^{-1}$$

    Case II :
    a $$\propto$$ 200 mm
    $$x$$ $$\propto\, 200\,\times\,\displaystyle \frac{73}{100}$$
    or, $$x\, \propto\, 146 mm$$

    $$ t_{73 \%}$$ = 100 min

    $$k_2\,=\, \displaystyle \frac{2.303}{100}\, log\, \left ( \displaystyle \frac{200}{200\, -\, 146} \right )\, =\, 1.309\,\times\, 10^{-2}\, min^{-1}$$

    (b) $$k\,=\, \displaystyle \frac{k_1\,+\,k_2}{2}\,=\, \frac{(1.308\,+\, 1.309)\, \times\, 10^{-2}}{2}$$

         $$k=1.308 \, \times\, 10^{-2}\, min^{-1}$$
  • Question 4
    1 / -0
    In a first order reaction, $$75\%$$ of the reactants disappeared in 1.386 hr. What is the rate constant?
    Solution
    $$t_{75\%}\, =\, 2t_{1/2}$$

    $$\displaystyle \therefore\, t_{1/2}\, =\, \frac{1.386\, hr}{2}\, =\, 0.693\, hr$$

    $$\displaystyle k\, =\, \frac{0.693}{t_{1/2}}\,= \frac{0.693}{0.693}\, =\, 1\, hr^{-1}\, =\, \frac{1}{3600s}$$

    $$=\, 2.7\, \times\, 10^{-4}\, s^{-1}$$
  • Question 5
    1 / -0
    In the following reaction, $$A\rightarrow B$$, rate constant is $$1.2\times10^{-2}\:M\:s^{-1}\:$$. What is concentration of B after 10 min, if we start with 10 M of A?
    Solution
    $$k=1. 2 \times 10^{–2}Ms^{–1}$$ 

    Since unit of rate constant is $$Ms^{–1}$$, it is zero order
    reaction
    Rate law $$[B] = kt$$

    At t = 10 min

    $$[B] = 1. 2 \times 10^{–2} \times 10 \times 60\ M$$

    $$[B] = 7. 2\ M$$
  • Question 6
    1 / -0
    In a certain reaction, 10% of the reactant decomposes in one hour, 20% in two hours, 30% in three hours, and so on. The dimension of the velocity constant (rate constant) is:
    Solution
    For zero-order reaction rate is independent of concentration. Hence, it is a zero-order reaction. So, dimension of $$k =$$ $$mol L^{-1}\, hr^{-1}$$

    For zero order: t $$=\displaystyle \frac{x}{k}\, or\, k\, =\, \frac{x}{t}$$

    If t $$=t_{10\%}\, =\, 60\, min,\, x\, =\, 10,$$

    Then, r $$=\displaystyle \frac{-10}{1}\, =\, 10\, mol\, L^{-1}\, hr^{-1}$$

    If t $$=t_{20\%}\, =\, 120\, min,\, x\, =\, 20,$$

    Then, r $$=\displaystyle \frac{20}{2}\, =\, 10\, mol\, L^{-1}\, hr^{-1}.$$

    Similarly, for 30% and so on.

    Thus, the reaction is of zero order.
  • Question 7
    1 / -0
    $$A\rightleftharpoons B+C$$
    Time              $$  t$$        $$\infty $$
    Total pressure of $$(B + C)$$    $$P_2$$        $$P_3$$
    Find equilibrium constant $$k$$.
    Solution
    $$a=P_{3}$$
    $$x=2P_{2}-P_{3}$$
    $$x=P_{3}-2(P_{3}-P_{2})$$
    $$a-x=2(P_{3}-P_{2})$$
    $$\displaystyle k=\frac{1}{t}ln\frac{a}{a-x}$$
    $$\displaystyle k=\frac{1}{t}ln\frac{P_{3}}{2(P_{3}-P_{2})}$$
  • Question 8
    1 / -0
    80% of a first order reaction was completed in 70 min. How much it will take for 90% completion of a reaction ?
    Solution
    According to given conditions,
    $$\displaystyle t_{80\%}\, \propto \, log\, \frac{100}{100\, -\, 80}\, =\, log\, \frac{10}{2}$$

    $$= log\ 5 = 0.69$$ $$\approx$$ $$0.7$$

    $$\displaystyle t_{80\%}\, \propto \, log\, \frac{100}{100\, -\, 90}\, =\, log\, 10\, =\, 1$$

    $$\displaystyle \frac{t_{80\%}}{t_{90\%}}\, =\, \frac{0.7}{1}\, \Rightarrow\, \frac{70}{t_{90\%}}\, =\, \frac{0.7}{1}$$

    $$\displaystyle \therefore t_{90\%}\, =\, \frac{70}{0.7}\, =\, \frac{700}{7}\, =\, 100\, min$$
  • Question 9
    1 / -0
    Unit of frequency factor (A) is:
    Solution

  • Question 10
    1 / -0
    The decomposition of a compound P, at temperature T according to the equation 
    $$2P_{(g)}\rightarrow4Q_{(g)}+R_{(g)}+S_{(l)}$$ is the first order reaction. After 30 minutes from the start of decomposition in a closed vessel, the total pressure developed is found to be 317 mm Hg and after a long period of time the total pressure observed to be 617 mm Hg. Calculate the total pressure of the vessel after 75 minute, if volume of liquid S is supposed to be negligible. Also calculate the time fraction $$t_{7/8}$$?
    Given : Vapour pressure of S(l) at temperature T = 32.5 mm Hg.
    Solution
    $$2P_{(g)}\rightarrow 4Q_{(g)}+R_{(g)}+S_{(l)}$$
    $$t=0$$ $$P_0$$
    $$t=30\:min.$$ $$P_{0}-P$$2PP/2
    $$t=\infty$$- $$2P_0$$ $$P_0/2$$
    so $$P_{0}-P+2P+P/2=317-32.5$$
    i.e. $$P_{0}+1.5\:P=284.5 $$.........(i)
    & $$2.5\:P_{0}=617-32.5=584.5$$
    so$$P_{0}=233.8$$
    $$P=33.8$$
    $$\displaystyle k\times 30=\ln \frac{233.8}{200}\Rightarrow k=0.0052$$
    At$$t=75\:min$$
    $$\displaystyle 0.0052\times 75=\ln \frac{233.8}{P^{\circ}-P}$$
    $$P^{\circ}-P=158.23\Rightarrow P=75.57$$
    $$P_{T}=32.5+P_0+1.5P=347.155+32.5$$
    $$P_{T}=379.65\:mm\:Hg$$
    (ii) $$0.0052\times t=\ln \:8$$
    $$t=399.89\:min.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now