Self Studies

Vector Algebra Test - 12

Result Self Studies

Vector Algebra Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$|\overrightarrow{C}|^2=60$$ and $$\overrightarrow{C} \times (\widehat{i}+2\widehat{j}+5\widehat{k})=\overrightarrow{0}$$, then a value of $$\overrightarrow{C}\cdot (-7 \widehat{i}+2\widehat{j}+3\widehat{k})$$ is :
    Solution
    $$ \vec {C}$$ is parallel to $$\widehat{i}+2\widehat{j}+5\widehat{k}$$.
    $$ \Rightarrow \vec {C}=t(\widehat{i}+2\widehat{j}+5\widehat{k})$$, where '$$t$$' is a scalar.
    $$ |\vec{C}|^2=60$$
    $$\Rightarrow t^2 ( \hat{i}.\hat{i} + 4 \hat{j}.\hat{j} + 25 \hat{k}.\hat{k} ) = 60 $$
    $$ \Rightarrow 60 = t^2 \times 30 $$
    $$\Rightarrow         t= \pm \sqrt{2}$$
    Now
    $$ \vec{C}.(-7i+2\widehat{j}+3\widehat{k})= \pm \sqrt{2} (i + 2 \widehat{j}+5\widehat{k})\cdot (-7\widehat{i} +2\widehat{j}+3 \widehat{k} )$$
    $$=\pm \sqrt{2}[-7+4+15]$$
    $$= \pm 12 \sqrt{2}$$
  • Question 2
    1 / -0
    Let $$ABC$$ be a triangle whose circumcentre is at P.  If the position vectors of $$A, B, C$$ and P are $$\vec {a}, \vec {b}, \vec {c}$$ and $$\dfrac {\vec {a} + \vec {b} + \vec {c}}{4}$$ respectively, then the position vector of the orthocentre of this triangle, is:
    Solution
    O is orthocentre and G is centroid and C is circumcentre. G divides OC in $$2:1$$ ratio.
    Position vector of centriod $$\vec {G} = \dfrac {\vec {a} + \vec {b} + \vec {c}}{3}$$
    Position vector of circum center $$\vec {C} = \dfrac {\vec {a} + \vec {b} + \vec {c}}{4}$$
    Apply Section Formula,
    $$\vec {G} = \dfrac {2\vec {C} + \vec {R}}{3}$$
    $$3\vec {G} = 2\vec {C} + \vec {R}$$
    $$\vec {R} = 3\vec {G} - 2\vec {C} = (\vec {a} + \vec {b} + \vec {c}) - 2 \left (\dfrac {\vec {a} + \vec {b} + \vec {c}}{4}\right )$$
    $$= \dfrac {\vec {a} + \vec {b} + \vec {c}}{2}$$

  • Question 3
    1 / -0
    The vectors $$\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$$ and $$\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$$ are the sides of a triangle $$ABC$$, then the  length of the median through $$A$$ is:
    Solution
    Take A as the origin(0,0)

    so $$\vec {AB}= 3\hat i + 4\hat k$$ and  $$AC = 5\hat i – 2\hat j + 4\hat k$$ will become position vector.

    So coordinate of B is $$(3,0,4)$$ and C is$$(5,-2,4)$$.

    The mid point of BC can be easily found by midpoint formula of two points as $$D(4,-1,4).$$

    so length of median through $$A$$ is $$AD$$$$=\sqrt{(4-0)^2+(-1-0)^2+(4-0)^2}$$
                                                                   $$=\sqrt{33}$$   

  • Question 4
    1 / -0
    If C is the mid point of AB and P is any point outside AB, then 
    Solution
    $$\overrightarrow { PA } +\overrightarrow { AC } +\overrightarrow { CP } =0$$
    $$\overrightarrow { PB } +\overrightarrow { BC } +\overrightarrow { CP } =0$$
    Adding we get 
    $$\overrightarrow { PA } +\overrightarrow { PB } +\overrightarrow { AC } +\overrightarrow { BC } +2\overrightarrow { CP } =0$$
    Since $$\overrightarrow { AC } =-\overrightarrow { BC }$$ and $$\overrightarrow { CP } =-\overrightarrow { PC } $$
    $$\Rightarrow \overrightarrow { PA } +\overrightarrow { PB } -2\overrightarrow { PC } =0$$
  • Question 5
    1 / -0
    In a parallelogram ABCD, $$|\overrightarrow{AB}| = a, |\overrightarrow{AD}| = b$$ and $$|\overrightarrow{AC}| = c$$, then $$\overrightarrow{DB}.\overrightarrow{AB}$$ has the value
    Solution
    In a parallelogram ABCD, $$|\overrightarrow{AB}| = a, |\overrightarrow{AD}| = b$$  and  $$|\overrightarrow{AC}| = c$$

    $$c^2=a^2+b^2-2ab\cos B$$

    $$\Rightarrow 2ab\cos B =-c^2+a^2+b^2$$

    $$\vec{DB}\cdot \vec {AB}=(\vec  {DA} + \vec {DC})\cdot\vec {AB}= ba \cos B + a^2=\displaystyle\frac{1}{2}(3a^2+b^2-c^2)$$

    Hence, option D.

  • Question 6
    1 / -0
    Let $$P,\ Q,\ R$$ and $$S$$ be the points on the plane with position vectors $$-2\hat{i}-\hat{j},\ 4\hat{i},\ 3\hat{i}+3\hat{j}$$ and $$-3\hat{i}+2\hat{j}$$ respectively. The quadrilateral $$PQRS$$ must be a
    Solution
    Evaluating midpoint of $$PR$$ and $$QS$$ which
    gives $$M\equiv[\dfrac{\hat{i}}{2}+\hat{j}]$$, same for both.
    $$
    \vec{PQ}=\vec{SR}=6\hat{i}+\hat{j}
    $$
    $$
    \vec{PS}=\vec{QR}=-\hat{i}+3\hat{j}
    $$

    $$
    \Rightarrow \vec{PQ}\cdot\vec{PS}\neq 0
    $$
    $$\vec{PQ}\Vert\vec{SR},\ \vec{PS}\Vert\vec{QR}$$ and $$|\vec{PQ}|=|\vec{SR}|,\ |\vec{PS}|=|\vec{QR}|$$
    Hence, $$PQRS$$ is a parallelogram but not rhombus or rectangle.

  • Question 7
    1 / -0
    Let  $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$$  and  $$\vec{c}=\hat{i}-\hat{j}-\hat{k}$$  be three vectors. A vector  $$\vec{v}$$  in the plane of   $$\vec{a}$$ and $$\vec{b}$$ , whose projection on  $$\vec{c}$$  is $$\displaystyle \dfrac{1}{\sqrt{3}}$$ , is given by $$;$$
    Solution
    Let $$\overrightarrow { v } =\lambda \overrightarrow { a } +\mu \overrightarrow { b } $$
    $$\Rightarrow\overrightarrow { v } =(\lambda +\mu )\hat { i } +(\lambda -\mu )\hat { j } +(\lambda +\mu )\hat { k } $$

    Projection of $$\overrightarrow { v }$$ on $$\displaystyle\overrightarrow { c }=\dfrac { \overrightarrow { v } .\overrightarrow { c }  }{ \left| \overrightarrow { c }  \right|  } = \dfrac { 1 }{ \sqrt { 3 }  } $$

    $$\Rightarrow\displaystyle\dfrac { (\lambda +\mu )-(\lambda -\mu )-(\lambda +\mu ) }{ \sqrt { 3 }  } =\dfrac { 1 }{ \sqrt { 3 }  }$$
    $$\Rightarrow\mu -\lambda =1$$
    or $$\mu =\lambda +1$$
    $$\Rightarrow\overrightarrow { v } =(2\lambda +1)\hat { i } -\hat { j } +(2\lambda +1)\hat { k } $$
    For $$ \lambda =1, \overrightarrow { v }=3\hat { i } -\hat { j }+3\hat { k }$$
  • Question 8
    1 / -0
    The triangle $$ABC$$ is defined by the vertices $$A= (0,7,10)$$ , $$B=(-1,6,6)$$ and $$C=(-4,9,6)$$. Let $$D$$ be the foot of the attitude from $$B$$ to the side $$AC$$ then $$BD$$ is
    Solution
    Given : $$A=(0,7,10), B=(-1,6,6)$$ and $$C=(-4,9,6)$$
    Position vector(P.V.) of $$AB$$ is $$(-1,-1,-4)$$
    $$\implies |AB|=\sqrt{(-1)^2+(-1)^2+(-4)^2}=\sqrt{18}$$
    P.V. of $$BC$$ is $$(-3,3,0)$$
    $$\implies |BC|=\sqrt{(-3)^2+3^2+0}=\sqrt{18}$$
    P.V. of $$AC$$ is $$(-4,2,-4)$$
    $$\implies |AC|=\sqrt{(-4)^2+2^2+(-4)^2}=6$$
    Now, $$D$$ is the midpoint of $$AC$$
    $$\implies D=\left(\dfrac{0-4}{2}, \dfrac{7+9}{2}, \dfrac{10+6}{2}\right)= (-2,8,8)$$
    $$\implies \overrightarrow{BD} = -\hat{i}+2\hat{j}+2\hat{k}$$

  • Question 9
    1 / -0
    The point $$C=(\dfrac{12}{5}, \dfrac{-1}{5},\dfrac{4}{5})$$ divides the line segment $$AB$$ in the ratio $$3:2$$. If $$B=(2,-1,2)$$ then $$A$$ is
    Solution
    By Section Formula
    $$C= \dfrac{3B+2A}{5}$$ 
    $$(12,-1,4)= (6,-3,6)+2(A)$$
    $$(6,2,-2)=2A$$
    $$A=(3,1,-1)$$

  • Question 10
    1 / -0
    $$ABCD$$ is a parallelogram and $$AC, BD$$ be its diagonals Then $$ \vec{AC} +\vec{BD}$$ is
    Solution
    $$ABCD$$ is a parallelogram so, $$AB||CD$$ and $$AD||BC$$
    $$\vec{AC}=\vec{AB}+\vec{BC}$$ (addition Theorem)
    $$\vec{BD}=\vec{BA}+\vec{AD}$$  (addition Theorem)
    $$\vec{AC}+\vec{BD}=\vec{AB}+\vec{BC}+\vec{BA}+\vec{AD}$$
    $$=\vec{AB}+\vec{BC}-\vec{AB}+\vec{BC}$$
    $$=2\vec{BC}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now