Self Studies

Vector Algebra Test - 14

Result Self Studies

Vector Algebra Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$A=(-3,4,-8)$$ and $$B=(5,-6,4)$$, then the coordinates of the point in which the $$XY$$- plane or $$XOY$$ plane divides the line segment $$AB$$ is
    Solution
    Let $$\vec{O}$$ divide $$AB$$ into $$K:1$$
    By Section Formula
    $$(x,y,o)= \dfrac{KB+A}{K+1}$$ 
    $$(x,y,o)= \dfrac{K(5,-6,4)+(-3,4,-8)}{K+1}$$
    $$0= \dfrac{K(4)-8}{K+1}$$
    $$K=2$$

    $$x=\dfrac{10-3}{3}= \dfrac{7}{3}$$

    $$y=\dfrac{-12+4}{3}= \dfrac{-8}{3}$$

  • Question 2
    1 / -0
    If $$3\vec{a}+4\vec{b}-7\vec{c}=0$$ then the ratio in which $$C(\vec{c})$$ divides the join of $$A(\vec{a})$$ and $$B(\vec{b})$$ is
    Solution
    Use section formula
     $$C= \dfrac{K\vec{b}+\vec{a}}{K+1}$$
    $$(K+1)\vec{c}= K\vec{b}+\vec{a}$$     ---- (1)
      $$a+\dfrac{4}{3}\vec{b}-\dfrac{7}{3}\vec{c}= 0$$      -----(2)
    $$\implies K= \dfrac{4}{3}$$

  • Question 3
    1 / -0
    The resultant of two concurrent forces $$n\vec{OP}$$ and $$m\vec{OQ}$$ is $$(m+n)\vec{OR}$$. Then $$R$$ divides $$PQ$$ in the ratio
    Solution
    Applying Section Formula
    $$R= \dfrac{KQ+P}{K+1}$$
    $$(K+1)R= KQ+P$$
    $${K+1}= \dfrac{m+n}{n}$$
    $${K}= \dfrac{m}{n}$$

  • Question 4
    1 / -0
    Let $$\vec{A}=\hat{i}+2\hat{j}{+}3\hat{k},\ \vec{B}=4\hat{i}+2\hat{j},\ \vec{C}=2\hat{i}+2\hat{j}{+}2\hat{k}$$. Then the ratio in which $$C$$ divides $$AB$$ is
    Solution
    Let $$A=(1,2,3)$$, $$B=(4,2,0)$$ and $$C=(2,2,2)$$
    Now let $$C$$ divide the line joining $$BA$$ in the ration $$M:N$$.
    Then $$C_{Z}=\dfrac{MA_{Z}+NB_{Z}}{M+N}$$
    $$\Rightarrow 2=\dfrac{M\times3+N\times0}{M+N}$$
    $$\Rightarrow 2M+2N=3M$$
    $$\Rightarrow 2N=M$$
    $$\Rightarrow \dfrac{N}{M}=\dfrac{1}{2}$$
    Hence, the required ratio is $$1:2$$.
  • Question 5
    1 / -0
    $$P, Q, R, S$$ have position vectors $$\overline{p},\overline{q},\overline{r},\overline{s}$$ respectively such that $$\overline{p}-\overline{q}=2(\overline{s}-\overline{r})$$, then which of the following is correct
    Solution
    Given : $$P,Q,R,S$$ have position vectors $$\bar{p}, \bar{q}, \bar{r}, \bar{s}$$
    $$\bar{p}-\bar{q}=2(\bar{s}-\bar{r})$$
    $$\implies \bar{p}-\bar{q}=2\bar{s}-2\bar{r}$$
    $$\implies \bar{p}+2\bar{r}=\bar{q}+2\bar{s}$$
    $$\implies \dfrac{\vec{p}+2\vec{r}}{3}= \dfrac{\vec{q}+2\vec{s}}{3} $$
    $$\implies \dfrac{\vec{P}+2\vec{R}}{3}= \dfrac{\vec{Q}+2\vec{S}}{3} $$
    Thus, $$QS$$ & $$PR$$ trisect each other.
  • Question 6
    1 / -0
    If $$\vec{a}+2\vec{b},2\vec{a}+\vec{b}$$ be the position vectors of the points $$A$$ and $$B$$, then the position vector of the point $$C$$ which divides $$AB$$ internally in the ratio $$2:1$$ is
    Solution
    Applying Section Formula
    $$C= \dfrac{2B+A}{3}$$
        $$= \dfrac{4\vec{a}+2\vec{b}+\vec{a}+2\vec{b}}{3}$$
    $$C= \dfrac{5\vec{a}+4\vec{b}}{3}$$
    Hence, option B is correct.

  • Question 7
    1 / -0
    In $$\Delta ABC$$, $$ P,\ Q,\ R$$ are points on $$BC,\ CA,\ AB$$ respectively, dividing them in the ratio $$1:4$$, $$3:2$$ and $$3 : 7$$. The point $$S$$ divides $$AB$$ in the ratio $$1:3$$. Then $$\displaystyle \dfrac{|\overline{AP}+\overline{BQ}+\overline{CR}|}{|\overline{CS}|}$$ is
    Solution
    P.v of P $$= \dfrac{\vec{c}+4\vec{b}}{5}$$

    P.v of R $$= \dfrac{7\vec{a}+3\vec{b}}{10}$$

    P.v of Q$$= \dfrac{3\vec{a}+2\vec{b}}{5}$$

    P.v of S $$= \dfrac{\vec{b}+3\vec{a}}{4}$$

    $$\overrightarrow{AP}= \dfrac{\vec{c}+4\vec{b}-5\vec{a}}{5}\ \ \overrightarrow{BQ}= \dfrac{3\vec{a}+2\vec{c}-5\vec{b}}{5}$$

    $$\overrightarrow{CR}= \dfrac{7\vec{a}+3\vec{b}-10\vec{a}}{10}\ \ \overrightarrow{CS}= \dfrac{\vec{b}+3\vec{a}-4\vec{c}}{4}$$

    $$\therefore$$ $$\dfrac{\dfrac{\left | 2\vec{c}+4\vec{c}-10\vec{c}+8\vec{b}-10\vec{b}+3\vec{b}-10\vec{a}+6\vec{a}+7\vec{a} \right |}{10}}{\left | \dfrac{\vec{b}+3\vec{a}-4\vec{c}}{4} \right |}$$
    $$= \dfrac{4}{10}$$

  • Question 8
    1 / -0
    If $$\vec a=\hat i+2\hat j$$ and $$\vec b = 3\hat j$$, then $$\vec a\cdot\vec b=$$
    Solution
    Yes, a triangular pyramid has 4 triangular faces.
  • Question 9
    1 / -0
    If $$\overline{a}$$ and $$\overline{b}$$ are position vectors of $$A$$ and $$B$$ respectively, then the position vector of a point $$C$$ in $$AB$$ produced such that $$\overline{AC}=3\overline{AB}$$ is
    Solution
    Let the Position Vector of $$C$$ be $$\vec{c}$$
    We have $$\vec{AC}=3\vec{AB}$$
    $$\vec{c}  -  \vec{a}= 3(\vec{b}  -  \vec{a})$$
    $$\vec{c}= 3\vec{b}  -  2\vec{a}$$
  • Question 10
    1 / -0
    If $$\left[ \overrightarrow { a } \overrightarrow { b } \overrightarrow { c }  \right] =1$$ then $$\frac { \overrightarrow { a } .\overrightarrow { b }\times \overrightarrow { c }  }{ \overrightarrow { c }\times \overrightarrow { a } .\overrightarrow { b }  } +\frac { \overrightarrow { b } .\overrightarrow { c }\times \overrightarrow { a }  }{ \overrightarrow { a }\times \overrightarrow { b } .\overrightarrow { c }  } +\frac { \overrightarrow { c } .\overrightarrow { a }\times \overrightarrow { b }  }{ \overrightarrow { b }\times \overrightarrow { c } .\overrightarrow { a }  }$$ is equal to
    Solution
    $$\overrightarrow { a } .\overrightarrow { b } \times \overrightarrow { c } $$ is $$[\overrightarrow { a } \overrightarrow { b } \overrightarrow { c } ]$$
    We snow that
    $$[\overrightarrow { a } \overrightarrow { b } \overrightarrow { c } ]=[\overrightarrow { c } \overrightarrow { a } \overrightarrow { b } ]$$
    Similarly,
    $$[\overrightarrow { b } \overrightarrow { c } \overrightarrow { a } ]=[\overrightarrow { a } \overrightarrow { b } \overrightarrow { c } ]$$
    = $$[\overrightarrow { c } \overrightarrow { a } \overrightarrow { b } ]$$
    $$\therefore $$ Expression = 1 + 1 + 1
    = 3
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now