Self Studies

Vector Algebra Test - 16

Result Self Studies

Vector Algebra Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the vectors a, b and c form the sides be the sides AB, CA, and AB respectively of a triangle ABC, then
    Solution
    Consider the problem 
    For a triangle 
    $$\vec a + \overrightarrow {b}  + \vec c = 0$$   -----   (i)
    Take cross product of $$\vec b$$ on both sides 

    $$\vec a \times \vec a + \vec a \times \overrightarrow {b}  + \vec a \times \vec c = 0$$

    $$\overrightarrow {b}  \times \vec a + \vec c \times \vec a = 0$$

    $$\vec c \times \vec a = \vec a \times \overrightarrow {b} $$   ----   (ii)

    Similarly take cross product of $$\vec b$$ both side in equation (i)

    $$\begin{array}{l} \vec { a } \times \vec { b } +\vec { b } \times \overrightarrow { b } +\vec { c } \times \vec { b } =0 \\ \vec { a } \times \vec { b } =\vec { b } \times \vec { c } \, \, \, ----\, (iii) \end{array}$$
    from (ii) and (iii)

    $$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$

    Hence option $$B$$ is correct answer.
  • Question 2
    1 / -0
    If $$\vec{a}, \vec{b}, \vec{c}$$ are three non coplanar vectors, then $$(\vec{a}+\vec{b}+\vec{c})[(\vec{a}+\vec{b}) \times (\vec{a}+\vec{c})] $$ is :
    Solution
    Since$$\vec{a}, \vec{b}, \vec{c}$$ are three non-coplanar vectors. Then say
    $$(\vec{a}+\vec{b}+\vec{c}) [(\vec{a}+\vec{b}) \times (\vec{a}+\vec{c})]=\vec{x}$$
    $$\Rightarrow \vec{x}=(\vec{a}+\vec{b}+\vec{c}) [(\vec{a}\times \vec{a}+ \vec{a} \times \vec{c}+\vec{b}\times \vec{a}+\vec{b}\times \vec{c}]$$
    $$=(vec{a}+\vec{b}+\vec{c})[\vec{a}\times \vec{a}+\vec{b}\times \vec{a}+\vec{b}\times \vec{c}]$$
    $$[\because \vec{a}\times \vec{a}=0]$$
    As $$[\vec{a} \vec{b} \vec{c}] =\vec{a}. (\vec{b} \times \vec{c})$$, so we can write
    $$\vec{x}=[\vec{a}\vec{a}\vec{c}] + [\vec[{a}\vec{b} \vec{a}]+ [\vec{a} \vec{b}\vec{c}] + [\vec{b}\vec{a}\vec{c}] + [\vec{b} \vec{b} \vec{a}]+ [\vec{c} \vec{a} \vec{c}]+[\vec{c}\vec{b} \vec{c}]$$
     Using $$[\vec{c}\vec[a]\vec{a}] =[\vec{b}\vec{c}\vec{a}]$$
    $$=[\vec{c}\vec{a}\vec{b}]$$ & $$[\vec{a} \vec{a} \vec{c}] = [\vec{a} \vec{b} \vec{a}]$$
    $$[\vec{c}\vec{a} \vec{a}]=0$$
    $$\vec{x} = -[\vec{a}\vec{b} \vec{c}]$$
  • Question 3
    1 / -0
    Two or more vectors having the same initial point are
    Solution
    Two or more vectors having same initial points are known as co-initial vectors,

    This implies that the correct option is (A)


  • Question 4
    1 / -0
    Given the points $$A(-2,3,4),B(3,2,5),C(1,-1,2),\,\&\,D(3,2,-4)$$ The projection of the vector $$\displaystyle \underset{AB}{\rightarrow}$$ on the vector $$\displaystyle \underset{CD}{\rightarrow}$$ is
    Solution
    The projection of the vector $$\displaystyle \underset{AB}{\rightarrow}$$ on the vector $$\displaystyle \underset{CD}{\rightarrow}$$ is $$\displaystyle \frac { \vec { AB } .\vec { CD }  }{ \left| \vec { CD }  \right|  } =\frac { \left( 5i-j+k \right) .\left( 2i+3j-6k \right)  }{ \left| \left( 2i+3j-6k \right)  \right|  } =\frac { 1 }{ 7 } $$
  • Question 5
    1 / -0
    The sum of two forces is $$18$$ N and resultant whose direction is at right angles to the smaller force is $$12$$N. The magnitude of the two forces are
    Solution
    Let the  smaller force be B ,the larger force be A,resultant being C.
    Given $$|A| +|B|=18 , |C|=12$$
    A,B,C simply form a right angled triangle with base B vector,hypotenuse being A.
    so,you have one equation with you $$A+B=18$$

            $$A^2 = B^2+  C^2$$
    $$=>A^2 - B^2=C^2$$
    $$=>(A-B) (A+B) = 144$$
    $$=>(A-B)(18)=144$$
    $$=>A-B=  144/18= 8$$

    Now solving both equations 
          $$A-B=8$$---------------------(i) 
          $$ A+B=18$$-------------------(ii)
    adding both (i) and (ii, we get)
         $$2A = 26$$
         $$=>  A=  13$$
    Putting this value in (i)
          $$13- B=8$$
          $$=>B=5$$
    $$|A|=13$$ and $$|B|=5$$
  • Question 6
    1 / -0
    If O is origin and C is the mid point of $$A(2, -1)$$ and $$B(-4,3)$$. Then value of OC is
    Solution
    $$\text{Since C is mid point of A(2,-1) and B(-4,3).}$$
    $$\therefore C(\dfrac{2-4}{2},\dfrac{-1+3}{2})i.e C(-1,1)$$
    $$\therefore OC=(-1-0)\hat i+(1-0)\hat j=-\hat i+\hat j$$
    Option B is correct.
  • Question 7
    1 / -0
    Given that u is a vector of length $$2$$, v is a vector of length $$3$$ and the angle between them when placed tail to tail is $$\displaystyle 45^{\circ} $$, which option is closest to the exact value of $$\vec u\cdot\vec v$$ ?
    Solution
    $$u.v=|u||v|\cos (45^0)$$
         $$=2.3.\cos(45^0)$$
         $$=4.24$$
    Option C is correct.
  • Question 8
    1 / -0
    The figure formed by the four points i + j - k, 2i + 3j, 3i + 5j -2k and k - j is
    Solution
    $$\begin{array}{l} AB=\vec { i } +2\vec { j } +\vec { k }  \\ BC=\vec { i } +2\vec { j } -2\vec { k }  \\ CD=-3\vec { i } -6\vec { j } +3\vec { k }  \\ DA=\vec { i } +2\vec { j } -2\vec { k }  \\ \therefore BC=DA\, \, and\, \, BC\parallel DA \\ and\, \, AB\, \, is\, \, not\, \, parallel\, \, to\, \, CD \\ \therefore po{ { int } }\, made\, \, a\, \, trapezium \\ Hence, \\ option\, \, B\, \, is\, \, correct\, \, answer \end{array}$$
  • Question 9
    1 / -0
    ABCDEF is a regular hexagon . Let $$\displaystyle \vec { AB } =a$$ and $$\displaystyle \vec { BC } =b$$. Express the vectors $$\displaystyle \vec { AC } $$ in terms if a and b.

    Solution
    By the triangle law addition,
    In triangle $$ABC$$ 
    by this law sum of two vector are equal to third vector which is connecting the the tail of vector $$a$$ and head of $$b$$.
    So therefore, 
    $$\vec {AC}=\vec a+\vec b$$

  • Question 10
    1 / -0
    The system of vectors $$i, j, k$$ is
    Solution
    $$\text{Since i,j, k represent unit vector in the direction of X,Y and Z axis respectively.}$$
    $$\text{Therefore, they are orthogonal.}$$
    Option A is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now