Self Studies

Vector Algebra Test - 20

Result Self Studies

Vector Algebra Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\bar{a}$$ is unit vector, then $$|\bar{a}\times \hat{i}|^2+|\bar{a}\times \hat{j}|^2+|\bar{a}\times \hat{k}|^2=$$ _____________.
    Solution
    Let $$x, y$$ and $$z$$ be the direction angles of the vector $$\overrightarrow{a}$$
    Then, 
    $$|\overrightarrow{a} \times \widehat{i}| =|\overrightarrow{a}||\widehat{i}|sin(x)=sinx$$
    Similarly, 
    $$|\overrightarrow{a} \times \widehat{j}| =siny$$
    $$|\overrightarrow{a} \times \widehat{k}| =sinz$$

    Therefore, $$|\overrightarrow{a} \times \widehat{i}|^2+|\overrightarrow{a} \times \widehat{j}|^2+|\overrightarrow{a} \times \widehat{k}|^2=sin^2x+sin^2y+sin^2z$$
    $$=(1-cos^2x)+(1-cos^2y)+(1-cos^2z)$$
    $$=3-(cos^2x+cos^2y+cos^2z)$$
    $$=3-1$$
    $$=2$$

    Hence, the answer is option (A).
  • Question 2
    1 / -0
    If $$\vec { a } $$ and $$\vec { b } $$ are non-zero non-collinear vectors, then $$\left[ \vec { a } \quad \vec { b } \quad \hat { i }  \right] \hat { i } +\left[ \vec { a } \quad \vec { b } \quad \hat { j }  \right] \hat { j } +\left[ \vec { a } \quad \vec { b } \quad \hat { k }  \right] \hat { k } $$ is equal to
    Solution
    Let $$ \vec{a}= a_1\hat{i} + a_2 \hat{j}+ a_3 \hat{k}$$
    $$ \vec{b} = b_{1} \hat{i}+ b_2 \hat{j} + b_3 \hat{k}$$
    $$ [\vec{a}\,\vec{b} \,\vec{c}]. \hat{i}+ [\vec{a}\, \vec{b}] \hat{j} + [\vec{a}\,\vec{b}\, \hat{k}] \hat{k}$$
    $$ = \left ( \left ( \vec{a} \times \vec{b} \right ) \hat{i}\right )\hat{i}+ \left ( \left ( \vec{a} \times \vec{b} \right )\hat{j} \right ) \hat{j}+ \left ( \left ( \vec{a}\times \vec{b} \right ).\hat{k} \right )\hat{k}$$
    $$ = \vec{a} \times \vec{b}$$

  • Question 3
    1 / -0
    The vector $$z = 3 - 4i$$ is turned anticlockwise through an angle of $$180^{\circ}$$ and stretched $$\dfrac{5}{2}$$ times. The complex number corresponding to the newly obtained vector is ....
    Solution
    $$z=3-4i$$ lie in fourth quadrant in complex plane, after turned anticlockwise through $$180^0$$ this will lie in II quadrant, therefore, the number will be $$-3+4i$$ now after stretching it $$2.5$$ times  i.e., multiplying by $$2.5$$, the required complex number will be
    $$\Rightarrow 2.5\times (-3+4i)$$
    $$\Rightarrow -\dfrac{15}{2}+10i$$

    Hence, this is the answer.
  • Question 4
    1 / -0
    If A and B are the points $$(2,1,-2),(3,-4,5)$$, then the angle that $$OA$$ makes with $$OB$$ is:
    Solution

    $$0\left( {0,0,0} \right)$$

    $$OA =  - 2\widehat i - \widehat j + 2\widehat k$$, $$\left( {OA} \right) = \sqrt {4 + 1 + 4}  = 3$$

    $$OB =  - 3\widehat i + 4\widehat j - 5\widehat k$$, $$\left( {OB} \right) = \sqrt { 9  + 16 + 25}  = \sqrt 50 $$

    Now $$\cos \theta  = \left| {{{\mathop {OA}\limits^ \to  .\mathop {OB}\limits^ \to  } \over {\left( {\mathop {OA}\limits^ \to  } \right).\left( {\mathop {OB}\limits^ \to  } \right)}}} \right|$$

    $$ = \left| {{{6 - 4 - 10} \over {3 \times \sqrt {50} }}} \right|$$

    $$ = {8 \over {3 \times 5\sqrt 2 }}$$

    $$\cos \theta  = {8 \over {15\sqrt 2 }}$$

    $$\cos \theta  = {{8 \times \sqrt 2 } \over {15 \times 2}}$$

    $$\cos \theta  = {{4\sqrt 2 } \over {15}}$$

    $$\theta  = {\cos ^{ - 1}}\left( {\dfrac{{4\sqrt 2 }}{{15}}} \right)$$

     

  • Question 5
    1 / -0
    If $$\vec {a}.\vec {b}.\vec {c}$$ represents the vectors $$\vec {BC}.\vec {CA}.\vec {AB}$$ respectively, then which one is correct 
    Solution
    Given that $$\vec{a}, \vec{b}, \vec{c}$$ represents $$\vec{BC}, \vec{CA}, \vec{AB}$$ respectively.
    $$\therefore$$ ABC is a triangle and $$\vec{a}, \vec{b}, \vec{c}$$ are the sides of $$\triangle{ABC}$$, respectively.
    $$\therefore \; ar{\left( \triangle{ABC} \right)} = \cfrac{1}{2} \times \vec{a} \times \vec{b} = \cfrac{1}{2} \times \vec{b} \times \vec{c} = \cfrac{1}{2} \vec{c} \times \vec{a}$$
    Hence, $$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$.
  • Question 6
    1 / -0
    If $$\left| {\widehat a - \widehat b} \right| = \sqrt 3 $$ , then  $$\left| {\widehat a + \widehat b} \right|$$  may be:-
    Solution
    $$\left| \overset { \wedge  }{ a } -\overset { \wedge  }{ b }  \right| =\sqrt { 3 } $$
    $$ Squaring\quad both\quad sides$$
    $$\implies\quad { \left| \overset { \wedge  }{ a }  \right|  }^{ 2 }+{ \left| \overset { \wedge  }{ b }  \right|  }^{ 2 }-2(\overset { \wedge  }{ a } .\overset { \wedge  }{ b } )={ (\sqrt { 3 } ) }^{ 2 }$$
    $$ \because \overset { \wedge  }{ a } \& \overset { \wedge  }{ b } \quad represent\quad unit\quad vectors.$$
    $$\implies\quad 1+1-2(\overset { \wedge  }{ a } .\overset { \wedge  }{ b } )=3$$
    $$\implies\quad -2\overset { \wedge  }{ a } .\overset { \wedge  }{ b } =1$$
    $$\implies\quad 2\overset { \wedge  }{ a } .\overset { \wedge  }{ b } =-1\quad -(i)$$
    $$ \left| \overset { \wedge  }{ a } +\overset { \wedge  }{ b }  \right| =\sqrt { { \left| \overset { \wedge  }{ a }  \right|  }^{ 2 }+{ \left| \overset { \wedge  }{ b }  \right|  }^{ 2 }+2\overset { \wedge  }{ a } .\overset { \wedge  }{ b }  } $$
    $$ =\sqrt { 1+1-1 } $$
    $$ =\sqrt { 2-1 } =1$$
  • Question 7
    1 / -0
    A line passes through the points whose position vectors $$ \hat { i } +\hat { j } -2\hat { k }$$ and $$\hat { i } -3\hat { j } +\hat { k }$$. Then the position vector of a point on it at a unit distance from the first point is 
    Solution
    Let points of the position vector $$\hat i + \hat j - 2\hat k$$ and $$\hat i - 3\hat j + \hat k$$ are $$A(1,1-2)$$ and $$(1,-3,1)$$
    $$AB=\sqrt{(1-1)^2+(1+3)^2+(-2-1)^2}=5$$
    Required points which divide $$AB$$ in ratio $$1:4$$
    The required position vector of the point 
    $$=\dfrac{1 \times (\vec i -3 \vec j + \vec k)+4(\vec i+\vec j-2 \vec k)}{1+4}=\dfrac{1}{5}(5 \vec i + \vec j -7 \vec k)$$
  • Question 8
    1 / -0
    If $$\vec{a}+\vec{b}\perp \vec{a}$$ and $$|\vec{b}|=\sqrt{2}|\vec{a}|$$, then?
    Solution
    Consider the problem , 

    $$\vec a + \vec b \bot \vec a$$
    therefore, 
    $$(\vec a+\vec b) \cdot \vec a=0$$

    $$\vec a\cdot \vec a+\vec b \cdot \vec a=0$$

    $$|\vec a|^2+\vec a \cdot \vec b=0$$

    $$\vec a \cdot \vec b=-|\vec a|^2$$  ---   $$(1)$$

    $$(2\vec a+\vec b).\vec b=2\vec a \cdot \vec b+\vec b\cdot \vec b$$

    $$=2\vec a\cdot \vec b+|\vec b|^2$$

    $$=2 \times -|\vec a|^2+(\sqrt 2 |\vec a|)^2$$

    $$=-2|\vec a|^2+2|\vec a|^2$$

    $$=0$$

    Therefore, 
    $$(2\vec a + \vec b) \bot \vec b$$

    Hence option $$B$$ is the correct answer.
  • Question 9
    1 / -0
    Let $$a=\hat{i}+2\hat j+3\hat k$$ and $$b=3\hat i+\hat j$$. Find the unit vector in the direction of the $$a+b$$.
    Solution
    Given, $$a=\hat{i}+2\hat j+3\hat k$$ and $$b=3\hat i+\hat j$$

    $$a + b = \left( {\hat i + 2\hat j + 3\hat k} \right) + \left( {3\hat i + \hat j} \right)$$
              $$ = 4\hat i + 3\hat j + 3\hat k$$

    $$\left| {a + b} \right| = \sqrt {{{\left( 4 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 3 \right)}^2}} $$
                $$ = \sqrt {16 + 9 + 9} $$
                $$ = \sqrt {34} $$

    So, unit vector in the direction of $$a+b $$ 
    $$ = \dfrac{{a + b}}{{\left| {a + b} \right|}}$$ 

    $$ = \dfrac{{4\hat i + 3\hat j + 3\hat k}}{{\sqrt {34} }}$$
  • Question 10
    1 / -0
    The set of values of $$c$$ for which the angle between the vectors $$cx\hat{i}-6\hat{j}+3\hat{k}$$ and $$x\hat{i}-2\hat{j}+2cx\hat{k}$$ is acute for every $$x\in R$$ is
    Solution
    $$cx^{2}+12+6cx>0\implies c(3c-4)<0\implies c\in(0,\dfrac{4}{3})$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now