Self Studies

Vector Algebra Test - 21

Result Self Studies

Vector Algebra Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector
    $$\vec a + \vec b,\vec a - k\vec b$$ where $$k$$ scalar are collinear, for
    Solution
    Say $$\vec{A}=\vec{a}+\vec{b}, \vec{B}=\vec{a}-k\vec{b}$$

    If two vectors are collinear then
    $$\vec{B}=\lambda\vec{A}$$                          ......(1)

    Now,
    $$\vec{B}=1(\vec{a}-k\vec{b})$$ 
    $$\lambda=1$$

    From equation (1), we get
    $$\vec{B}=1\times \vec{A}$$
    $$\vec{a}+\vec{b}=\vec{a}-k\vec{b}$$
    $$k=-1$$

    Hence for $$k=-1$$, $$\vec{A}$$ and $$\vec{B}$$ are collinear.
  • Question 2
    1 / -0

    Directions For Questions

    In a parallelogram OABC, vectors $$\vec{a}, \vec{b}, \vec{c}$$ are respectively the position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of $$2:1$$ internally. Also, the line segment AE intersect the line bisecting the angle O internally in point P. If CP, when extended meets AB in point F. Then?

    ...view full instructions

    The position vector of point F, is?
    Solution

    According to question:

    $$\begin{array}{l} B=\overrightarrow { a } +\overrightarrow { c }  \\ \overrightarrow { E } =\dfrac { { 2\overrightarrow { c } +\overrightarrow { a } +\overrightarrow { c }  } }{ 3 } =\dfrac { { 3\overrightarrow { c } +\overrightarrow { a }  } }{ 3 }  \\ then, \\ Position\, vector\, is: \\ \, \, \, \, \, \overrightarrow { OP } =\lambda \, (\overrightarrow { a } +\overrightarrow { c } )-----(i) \\ \, \, \, \, Now, \\ \, \, \, \, \, \, \, positon\, \, vector\, of\overrightarrow { \, p } : \\ \, \, \, \, \, \overrightarrow { p } =\overrightarrow { a } +\mu \left( { \dfrac { { 3\overrightarrow { c } +\overrightarrow { a }  } }{ 3 } -\overrightarrow { a }  } \right)  \\ \, \, \, \overrightarrow { p } =\overrightarrow { a } +\mu \left( { \dfrac { { 3\overrightarrow { c } -2\overrightarrow { a }  } }{ 3 }  } \right) -----(ii) \\ Now,\, equating\, \, eqn.\, \, (i)\, \, \& \, (ii) \\ \lambda \, \left( { \dfrac { { \overrightarrow { a }  } }{ { \left| { \overline { a }  } \right|  } } +\dfrac { { \overrightarrow { c }  } }{ { \left| { \overline { c }  } \right|  } }  } \right) =\overrightarrow { a } +\dfrac { \mu  }{ 3 } \left( { 3\overrightarrow { c } -2\overrightarrow { a }  } \right)  \\ \dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } } =1-\dfrac { { 2\mu  } }{ 3 } \, \, \, \, \, \, \, (cofficient\, compare) \\ \dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } } =\dfrac { { 3\mu  } }{ 3 } ,\, \, \, \, \, \, \, \, \, \mu =\dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } }  \\ And, \\ \dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } } =1-\dfrac { 2 }{ 3 } .\, \dfrac { \lambda  }{ { \left| { \overline { c }  } \right|  } }  \\ \lambda \left( { \dfrac { 1 }{ { \left| { \overline { a }  } \right|  } } +\dfrac { 2 }{ 3 } .\, \dfrac { 1 }{ { \left| { \overline { c }  } \right|  } }  } \right) =1 \\ \lambda =\dfrac { { 3\left| { \overline { a }  } \right| \, \left| { \overline { c }  } \right|  } }{ { 3\left| { \overline { c }  } \right| +2\left| { \overline { a }  } \right|  } }  \\ \, positon\, \, vector\, of\overrightarrow { \, p } : \\ \overrightarrow { p } =\dfrac { { 3\left| { \overline { a }  } \right| \, \left| { \overline { c }  } \right|  } }{ { 3\left| { \overline { c }  } \right| +2\left| { \overline { a }  } \right|  } } \, \, \, \left( { \dfrac { { \overrightarrow { a }  } }{ { \left| { \overline { a }  } \right|  } } +\dfrac { { \overrightarrow { c }  } }{ { \left| { \overline { c }  } \right|  } }  } \right)  \\ so\, ,\, the\, correct\, \, option\, is\, A. \end{array}$$

  • Question 3
    1 / -0
    If $$ | \overline{a} | = 1 , | \overline{b} | = 2, | \overline{a} - \overline{b} |^2 + | \overline{a} + 2 \overline{b} |^2 = 20, $$ then $$ ( \overline{a} , \overline{b} ) = $$ 
    Solution
    Given
    $$|\bar{a}|=1 , |\bar{b}|=2, |\bar{a}-\bar{b}|^{2}+|\bar{a}+2\bar{b}|^{2}=20$$

    $$|\bar{a}|^{2}+|\bar{b}|^{2}-2|\bar{a}||\bar{b}| \cos (\bar{a},\bar{b})+|\bar{a}|^{2}+4|\bar{b}|^{2}+4|\bar{a}||\bar{b}| \cos (\bar{a},\bar{b})=20$$

    $$\Rightarrow 2|\bar{a}|^{2}+5|\bar{b}|^{2}+2|\bar{a}||\bar{b}| \cos (\bar{a},\bar{b})=20$$

    $$\Rightarrow 2(1)^{2}+5(2)^{2}+2\times 1\times 2\times \cos (\bar{a},\bar{b})=20$$

    $$\Rightarrow 22+4 \cos (\bar{a},\bar{b})=20$$

    $$\cos (\bar{a},\bar{b})=\dfrac{-1}{2}$$
    $$\Rightarrow \pi -(\bar{a},\bar{b})=\dfrac{\pi }{3}$$
    $$\Rightarrow (\bar{a},\bar{b})=(\pi -\dfrac{\pi }{3})=\dfrac{2\pi }{3}$$
  • Question 4
    1 / -0
    If $$\bar{a}=2\bar{i}+\bar{j}+\bar{k}, \bar{b}=\bar{i}+5\bar{j}, \bar{c}=4\bar{i}+4\bar{j}-2\bar{k}$$ then the length of the projection of $$(3\bar{a}-2\bar{b})$$ in the direction of $$\bar{c}$$.
    Solution
    $$3\vec{a} - 2\vec{b} = 6\hat{i} + 3\hat{j} + 3\hat{k} - 2\hat{i} - 10\hat{j}$$
    $$\implies 4\hat{i} - 7\hat{j} +3\hat{k}$$
    Scalar projection = $$\cfrac{(3\vec{a} -2\vec{b}).\vec{c}}{|\vec{c}|}$$
    $$\implies \cfrac{16-28-6}{\sqrt{16+16+4}}$$
    $$\implies \cfrac{18}{\sqrt{36}}$$
    $$\implies 3$$
  • Question 5
    1 / -0
    In a triangle ABC, if $$ 2\vec { AC } =3\vec { CB }$$, then $$2\vec { OA } +3\vec { OB }$$ equals ?
    Solution
    $$\begin{array}{l} Given\, in\, \, \, \Delta ABC, \\ \, \, \, \, \, \, \, \, \, \, \, \, 2\, \overrightarrow { AB } =3\overrightarrow { CB, }  \\ \, \, \, \, \, \, \, \, \, \, \, \, 2\overrightarrow { OA } =3\overrightarrow { OB } , \\ We\, know\, that, \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \overrightarrow { AC } =\overrightarrow { OC } \, -\overrightarrow { OA }  \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \overrightarrow { CB } =\overrightarrow { OB } -\overrightarrow { OC }  \\ then, \\ \, \, \, 2(\overrightarrow { OC } -\overrightarrow { OA } )=3(\overrightarrow { OB } -\overrightarrow { OC } ) \\ 2\, \overrightarrow { OC } +2\overrightarrow { \, OA } =3\overrightarrow { OB } -3\overrightarrow { OC }  \\ 2\, \, \overrightarrow { OC } -3\, \overrightarrow { \, OC } =3\, \overrightarrow { \, OB } +2\overrightarrow { OA }  \\ 5\, \overrightarrow { OC } =\, \, 2\overrightarrow { OA } \, +3\, \overrightarrow { \, OB }  \end{array}$$
    $$\,So,\,\,\,\,2\overrightarrow {OA} \, + 3\,\overrightarrow {\,OB}  = 5\,\overrightarrow {OC} $$
  • Question 6
    1 / -0
    If $$|\overrightarrow{a}| = 5, |\overrightarrow{a} - \overrightarrow{b}|=8$$ and $$|\overrightarrow{a} + \overrightarrow{b}| = 10$$, then $$|\overrightarrow{b}|$$ is equal to:
    Solution
    Given,
    $$\left| {\overline a } \right| = 5\,$$
    $$\,\left| {\overline a  - \overline b } \right| = 8\, \,          equation -  -  - (1$$
    $$\,\left| {\overline a  + \overline b } \right| = 10\,\,         equation -  -  - (2$$

    Squaring and adding both equation  (1) & (2)

    $$\underline { \begin{array}{l} { \left| a \right| ^{ 2 } }+{ \left| b \right| ^{ 2 } }-2\left| a \right| \left| b \right| \cos  \theta =64 \\ { \left| a \right| ^{ 2 } }+{ \left| b \right| ^{ 2 } }+2\left| a \right| \left| b \right| \cos  \theta =100 \end{array} } $$
    $$\begin{array}{l} 2\left( { { { \left| a \right|  }^{ 2 } }+{ { \left| b \right|  }^{ 2 } } } \right) =164 \\ { \left| a \right| ^{ 2 } }+{ \left| b \right| ^{ 2 } }=82 \\ we\, have, \\ \left| a \right| =5 \\ then, \\ { \left( 5 \right) ^{ 2 } }+{ \left| b \right| ^{ 2 } }=82 \\ { \left| b \right| ^{ 2 } }=82-25 \\ { \left| b \right| ^{ 2 } }=57 \\ \left| b \right| =\sqrt { 57 }  \end{array}$$

    So the correct Ans is option B.



  • Question 7
    1 / -0
    If the vector $$OP$$ in $$XY$$ plane whose magnitude is $$\sqrt3$$ makes an angle $$60^o$$ with $$Y-$$ axis, the length of the component of the vector in direction of $$X-$$ axis is :
    Solution
    Vector $$V=x \uparrow + y \uparrow$$
    $$\tan 30^0=\dfrac{y}{x} \Rightarrow \dfrac{1}{\sqrt{3}}\dfrac{y}{x} \Rightarrow \boxed{x=\sqrt{3}y}$$
    given $$|v|=\sqrt{3}$$
    $$\Rightarrow \sqrt{x^2+y^2}=\sqrt{3}$$
    $$\Rightarrow \sqrt{3y^2+y^2}=\sqrt{3}$$  (using (1)
    $$\Rightarrow 4y^2=3$$
    $$\Rightarrow \boxed{y=\dfrac{\sqrt{3}}{2}}$$
    $$x=\sqrt{3}y=\sqrt{3}\times \dfrac{\sqrt{3}}{2}$$
    $$\boxed{x=\dfrac{3}{2}}$$
    $$\therefore$$ component of vector in $$x-axis$$ direction is $$\dfrac{3}{2}$$.

  • Question 8
    1 / -0
    Let $$\overrightarrow{a}=\hat{i}-\hat{k}, \overrightarrow{b}=x\hat{i}+\hat{j}+\left(1-x\right)\hat{k},\overrightarrow{c}=y\hat{i}+x\hat{j}+\left(1+x-y\right)\hat{k}$$. then $$\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$$ depends on
    Solution
    $$\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]=\left[\begin{matrix} 1 & 0 & -1 \\ x &1  &1-x  \\ y & x & 1+x-y \end{matrix}\right]$$
    $${c}_{1}+{c}_{2}\rightarrow{c}_{3}$$
    $$=\left[\begin{matrix} 1 & 0 & -1+1 \\ x & 1 & 1-x+x +1\\y  &x  &1+x-y+x+y  \end{matrix}\right]$$
    $$=\left[\begin{matrix} 1 & 0 & 0 \\ x & 1 & 2 \\y  &x  &1+2x \end{matrix}\right]$$
    $$=1\left(1+2x-2x\right)-0+0=1$$
  • Question 9
    1 / -0
    For three vectors $$\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}$$ which of the following expressions is not equal to any of remaining is
    Solution
    In a scalar triple product dot and cross can be interchanged.
    $$\overrightarrow{u}.\left(\overrightarrow{v}\times \overrightarrow{w}\right) =\left(\overrightarrow{u}\times \overrightarrow{v}\right).\overrightarrow{w}$$
    the vectors can be changed cyclically.
    $$\therefore  \left(\overrightarrow{v}\times \overrightarrow{w}\right).\overrightarrow{u}= \left(\overrightarrow{u}\times \overrightarrow{v}\right).\overrightarrow{w}$$
    $$\Rightarrow \overrightarrow{v}.\left(\overrightarrow{u}\times \overrightarrow{w}\right) =-\overrightarrow{u}.\left(\overrightarrow{v}\times \overrightarrow{w}\right)$$
  • Question 10
    1 / -0
    If $$\bar{a}$$ and $$\bar{b}$$ are non-collinear unit vectors and $$\left|\bar{a}+\bar{b}\right|=\sqrt{3}$$ then $$\left(2\bar{a}+5\bar{b}\right)\cdot \left(3\bar{a}-\bar{b}\right)=?$$
    Solution
    $$\left| \bar { a } +\bar { b }  \right| =\sqrt { { \left| \bar { a }  \right|  }^{ 2 }+{ \left| \bar { b }  \right|  }^{ 2 }+2\bar { a } .\bar { b }  } =\sqrt { 3 } $$
    Since $$\left| \bar { a }  \right| =\left| \bar { b }  \right| =1$$
    $$\bar { a } .\bar { b } =\cfrac { 1 }{ 2 } $$
    So, $$(2\bar { a } +5\bar { b } ).(3\bar { a } -\bar { b } )=6{ \left| \bar { a }  \right|  }^{ 2 }-2\bar { a } .\bar { b } +15\bar { b } .\bar { a } -5{ \left| \bar { b }  \right|  }^{ 2 }$$
    as $$\bar { a } .\bar { b } =\bar { b } .\bar { a } $$, we can say that
    $$(2\bar { a } +5\bar { b } ).(3\bar { a } -\bar { b } )=6+13(\cfrac { 1 }{ 2 } )-5=\cfrac { 15 }{ 2 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now