Self Studies

Vector Algebra Test - 22

Result Self Studies

Vector Algebra Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio in which the line joining $$(2,-4,3)$$ and $$(-4,5,-6)$$ is divided by the plane $$3x+2y+z-4=0$$ is 
    Solution
    We have given points as shown in the figure
    $$Eq{u^n}\,of\,line\,\,AB:\,\frac{{x - 2}}{6} = \frac{{y + 4}}{{ - 9}} = \frac{{z - 3}}{9}$$
    Now
    Points $$P$$ is $$\left( {6r + 2,\, - 9r - 4,\,9r + 3} \right)$$
    $$3\left( {6r + 2} \right) + 2\left( { - 9r - 4} \right) + 9r + 3 = 4$$
    $$9r + 1 = 4$$
    $$\therefore r = \dfrac{1}{3}$$
    So, 
    $$P\left( {4, - 7,6} \right)$$
    Now,
    $$\frac{{AP}}{{BP}} = \sqrt {\frac{{{{\left( { - 2} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( { - 3} \right)}^2}}}{{{{\left( 8 \right)}^2} + {{\left( {12} \right)}^2} + {{\left( 12 \right)}^2}}}} $$
    $$ = \sqrt {\frac{{22}}{{352}}} $$
    $$ = \sqrt {\frac{{11}}{{176}}} $$
    $$ = \sqrt {\frac{1}{{16}}}  = \frac{1}{4}$$
    As $$P$$ divides externally in the ratio of $$1:4$$.
    Hence, The option $$C$$ is the correct answer.

  • Question 2
    1 / -0
    A vector $$\overrightarrow { A } $$ points vertically downward(south)and $$\overrightarrow { B } $$ points towards east, then the vector product $$\overrightarrow { A } \times \overrightarrow { B } $$ is:
    Solution
    $$\vec{A}\times \vec{B}$$ is perpendicular to the plane of paper and acting outward. It is denoted by $$\otimes $$

  • Question 3
    1 / -0
    $$\bar{a}$$ and $$\bar{b}$$ are the position vectors of A and B respectively. Points P and Q divide AB, internally and externally in the same ratio 2:1 , then PQ is equal to 
    Solution
    Position vector of P will be $$\vec{OP}=\left(\dfrac{2\bar{b}+\bar{a}}{3}\right)$$  (P divides AB internally in the ratio $$2:1$$)
    Position vector of Q will be $$\vec{OQ}=\left(\dfrac{2\bar{b}-\bar{a}}{2-1}\right)=\left(\dfrac{2\bar{b}-\bar{a}}{1}\right)$$
    (Q divides AB externally in the ratio $$2:1$$)
    $$\vec{PQ}=\vec{OQ}-\vec{OP}=\left(2\vec{b}-\vec{a}\right)-\left(\dfrac{2\bar{b}+\bar{a}}{3}\right)=\dfrac{4\vec{b}}{3}-\dfrac{4\vec{a}}{3}$$
    $$=\dfrac{4}{3}(\vec{b}-\vec{a})$$.

  • Question 4
    1 / -0
    Two vector $$A$$ and $$B$$ have equal magnitudes. Then the vector $$A+B$$ is perpendicular to 
    Solution
    $$\vec{A}\times \vec{B}$$ is a vector perpendicular to plane $$\vec{A}+\vec{B}$$ and hence perpendicular to $$\vec{A}+\vec{B}$$
  • Question 5
    1 / -0
    The work done by the force $$\vec { F } = 2 \hat { i } - \hat { j } - \hat { \mathbf { k } }$$ in moung an object along the vector $$3 \hat { i } + 2 j - 5 \hat { k }$$ is
    Solution
    $$\vec { F } = 2 \hat { i } - \hat { j } - \hat { k } $$
    $$\vec { r } = 3 \hat { i } +2 \hat { j } - 5\hat { k } $$
    $$Work=\vec { F }.\vec{r}$$
    $$Work= (2\hat { i } - \hat { j } - \hat  { k  }).(3 \hat { i } +2 \hat { j } - 5\hat { k })$$
    $$Work=6-2+5$$
    $$Work=11-2=9units$$
    Hence the correct option is (B).
  • Question 6
    1 / -0
    If  $$2\overline a  - 4\widehat i - 2\widehat j + \widehat k = 0$$ then find $$\overline a $$.
    Solution
    $$\begin{array}{l} 2\overline { a } -4\widehat { i } -2\widehat { j } +\widehat { k } =0 \\ 2\overline { a } =4\widehat { i } +2\widehat { j } -\widehat { k }  \\ \overline { a } =\left( { 2\widehat { i } +\widehat { j } -\frac { 1 }{ 2 } \widehat { k }  } \right)  \end{array}$$
  • Question 7
    1 / -0
    Let $$\vec{a}=\hat{i}+\hat{j}+\hat{k}$$ and $$\vec{b}$$ is a vector such that $$\vec{a}.\vec{b}=0$$ and $$\vec{a}\times \vec{b}=0$$. Then which of following is correct?
    Solution
    $$\begin{array}{l} \vec { a } .\vec { b } =0 \\ \vec { a } \times \vec { b } =0 \\ \left| { \vec { a }  } \right| \left| { \vec { b }  } \right| \cos  \theta =0 \\ \left| { \vec { b }  } \right| \cos  \theta =0 \\ or, \\ \vec { a } =\hat { i } +\hat { j } +\hat { k }  \\ \left| { \vec { a }  } \right| =\sqrt { 3 }  \\ \left| { \vec { a }  } \right| \left| { \vec { b }  } \right| \sin  \theta =0 \\ \left| { \vec { b }  } \right| \sin  \theta =0 \\ N0w, \\ \left| { \vec { b }  } \right| =0 \\ \vec { b } =0 \\ Hence, \\ option\, \, A\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 8
    1 / -0
    Given that $$\vec{ A } \times \vec{ B } =\vec{ B } \times \vec { C } =\vec { 0 } $$ if $$\vec{ A } \vec { B } \vec { C } $$ are not null vectors, Find the value of $$\vec{ A } \times \vec{ C } $$
    Solution
    We have,
    $$\begin{array}{l} \vec { A } \times \vec { B } =\vec { B } \times \vec { C } =\vec { 0 }  \\ \vec { A } \times \vec { B } +\vec { C } \times \vec { B } =\vec { 0 }  \\ \left( { \vec { A } +\vec { C }  } \right) \times \vec { B } =\vec { 0 }  \\ \vec { A } +\vec { C } =\lambda \vec { B }  \\ \vec { A } \times \vec { C } +0=\lambda \left( { \vec { B } \times \vec { C }  } \right) \\ \vec { A } \times \vec { C } =\vec { 0 }  \\ Hence,\, the\, option\, B\, is\, correct.\,  \end{array}$$
  • Question 9
    1 / -0
    Magnitude of vector $$3\hat { i } -12\hat { j } -4\hat { k } $$
    Solution
    Let $$ a=3\hat{i}-12\hat{j}-4\hat{k}$$
    Magnitude of a,$$\left | a \right |$$ =$$\sqrt{3^{2}+(-12)^{2}+(-4)^{2}}$$
    $$ = \sqrt{9+144+16}$$
    $$ = \sqrt{169}$$
    $$ =13.$$

  • Question 10
    1 / -0
    $$\vec{r}  = \vec{x}\hat{i}+\vec{y}\hat{j}$$ is the equation of:
    Solution
    A vector is defined by its magnitude and its orientation with respect to a set of coordinates. It is often useful in analyzing vectors to break them into their component parts. For two-dimensional vectors, these components are horizontal and vertical. 
    Vector can always be represented in two dimension and three dimension. In two dimension, vector is represented in the form of $$x\hat{i}+y\hat{j}$$. In three dimension, it is represented by $$x\hat{i} + y\hat{j} + z\hat{k}$$.
    Thus, $$\overrightarrow{r}=x\hat{i}+y\hat{j}$$ is vector in $$xy$$ plane.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now