Self Studies

Vector Algebra Test - 24

Result Self Studies

Vector Algebra Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector sum of $$N$$ coplanar forces, having magnitude of $$F$$, when each force is making an angle of $$\displaystyle \frac{2\pi}{N}$$ with that preceding it, is:
    Solution
    If there are $$N$$ forces of magnitude $$F$$ and each force makes an angle of $$\dfrac { 2 \pi}{N} $$ with the preceding one, then these forces form the sides of a $$N$$ sided regular polygon thus making the resultant of all the forces equal to zero.
  • Question 2
    1 / -0
    Five equal forces each of 20N are acting at a point in the same plane. If the angles between them are same, then the resultant of these forces is:
    Solution
    When we take out components for all the vectors, they all cancel out each other.
    So, by assuming it to be a symmetric case (as angles between all forces are same and acting at the same point) we can directly conclude that the resultant is zero.
  • Question 3
    1 / -0
    If there are 11 vectors each having a magnitude equal to $$| \vec{p} |$$ and if each side of polygon subtends an angle $$30^{0}$$ at the centre of the polygon. Then the resultant is 
    Solution

    $$12$$ vectors at $$30^0$$ can make resultant $$\overrightarrow{0}$$ due to circular symmetry.

    Vector sum of $$11$$ vector $$+ 12$$ vector $$=0$$

    $$R+\overrightarrow{p}$$$$=0$$

    $$R=-$$$$\overrightarrow{p}$$

    Hence, resultant vector will be opposite direction of $$R$$. 

  • Question 4
    1 / -0
    $$\mathrm{If}$$ $$\vec{AD},\ \vec{BE},\ \vec{CF}$$ are medians of an equilateral triangle $$\mathrm{A}\mathrm{B}\mathrm{C}$$, then $$\vec{AD}+\vec{BE}+\vec{CF}$$ equals to 
    Solution
    The question wants to ask what is the vector sum of these $$23 $$ median vectors. The answer is correct. Let the vectors of vertices be $$a, b$$ and $$0$$ then the median vectors are $$(a+b)/2, b/2 - a$$ and $$a/2 - b$$
    The sum is a zero vector. and $$a+ b-a +(-b) $$ which is vector sum of $$\vec{AB}, \vec{BC}$$ and $$\vec{CA}$$ is also $$0$$.
  • Question 5
    1 / -0
    If $$\overrightarrow { a } ,\overrightarrow { b } $$ and $$\overrightarrow { c } $$ are three non-zero vectors such that $$\overrightarrow { a } .\overrightarrow { b } =\overrightarrow { a } .\overrightarrow { c } ,$$ then
    Solution
         Here  If      $$\vec{a} ,\vec{b}$$    and    $$\vec{c}$$
         are   three  non-zero  vectors   such  that
                
         $$\vec{a} .\vec{b}$$ = $$\vec{a} .\vec{c}$$
         $$\vec{a} .\vec{b}$$  - $$\vec{a} .\vec{c} =0 $$ 
         $$ \vec{a}.(\vec{b} - \vec{c}) =0 $$
         $$ \vec{a} =0  , (\vec{b} - \vec{c}) =0 $$
         $$ \vec{a} =0$$  or $$\vec{b} = \vec{c}  $$
         Therefore  from this  , we  get
         Either  $$ \vec{a}\perp (\vec{b} -  \vec{c})$$    or   $$\vec{b}  =  \vec{c}$$
         Hence  Option  $$(D)$$
                 
  • Question 6
    1 / -0
    Let $$\mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D}$$ be a trapezium and let $$\mathrm{P},\mathrm{Q}$$ be the midpoints of the nonparallel sides $$\mathrm{A}\mathrm{D},\ \mathrm{B}\mathrm{C}$$ respectively. Then $$\vec { PQ } $$
    Solution
    $$AP=PD$$ ($$P$$ is mid point)
    $$BQ=QC$$ ($$Q$$ is mid point)

    Let $$\vec{a},\vec{b},\vec{c}, \vec{d}$$ are position vector of $$ABCD$$ respectively
    position vector of $$P = \dfrac{\vec{a}+\vec{d}}{2}$$
    position vector of $$Q = \dfrac{\vec{b}+\vec{c}}{2}$$
    $$\vec{PQ}=\dfrac{1}{2}(\vec{b}-\vec{a}-\vec{d}+\vec{c})$$
    $$=\dfrac{1}{2}(\vec{AB}-\vec{CD})$$
    $$=\dfrac{1}{2}(\vec{AB}+\vec{DC})$$

  • Question 7
    1 / -0
    Let $$\mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D}$$ be a parallelogram and let $$\mathrm{L}$$ and $$\mathrm{M}$$ be the midpoints of the sides $${ BC } $$ and $$ { CD }$$  respectively. Then  $$\vec { AL } +\vec { AM } =$$
    Solution
    $$BL=LC$$
    $$CM=DM$$
    $$\vec{AB}=\vec{DC}=\vec{a}$$
    $$\vec{AD}=\vec{BC}=\vec{b}$$
    $$\vec{AL}=\vec{AB}+\vec{BL}$$
    $$\vec{AM}=\vec{AD}+\vec{DM}$$
    $$\vec{AL}+\vec{AM}=\vec{AB}+\vec{\dfrac{BC}{2}}+\vec{AD}+\vec{\dfrac{DC}{2}}$$
    $$=\dfrac{3}{2}\left ( \vec{AB}+\vec{BC} \right )$$
    $$=\dfrac{3}{2}\vec{AC}$$
  • Question 8
    1 / -0
    $${A}{B}{C}{D}$$ is a quadrilateral, $$E$$ is the point of intersection of the line joining the middle points of the opposite sides. lf $$O$$ is any point, then $$\hat { OA } +\hat { OB } +\hat { OC } +\hat { OD } =$$
    Solution
    Let $$PV$$ (position vector) of $$A,B,C,D$$ be $$\vec{a}, \vec{b}, \vec{c}, \vec{d}$$ respectively.
    $$PV$$ of $$P$$ $$=$$ $$ \dfrac{\vec{a}+\vec{b}}{2}$$
    $$PV$$ of $$Q$$ $$=$$ $$\dfrac{\vec{c}+\vec{d}}{2}$$
    $$PV $$ of $$v$$ $$=$$ $$\dfrac{\vec{a}+\vec{d}}{2}$$
    $$PV $$ of $$u$$ $$=$$ $$\dfrac{\vec{b}+\vec{b}}{2}$$
    $$\vec{PQ}=\dfrac{1}{2}(\vec{d}-\vec{a}+\vec{c}-\vec{b})$$
    $$\vec{uv}=\dfrac{1}{2}(\vec{a}-\vec{b}+\vec{d}-\vec{c})$$
    So, $$E=\dfrac{\vec{a}+\vec{b}+\vec+{c}+\vec{d}}{4}$$
    Let $$O$$ be origin, so $$\vec{OA}+\vec{OB}+\vec{OC}+\vec{OD}=\vec{a}+\vec{b}+\vec{c}+\vec{d}$$
    Therefore, $$4\vec{OE}=\vec{a}+\vec{b}+\vec{c}+\vec{d}$$

  • Question 9
    1 / -0
    If $$\overline{DA}=\overline{a};\overline{AB}=\overline{b}$$ and $$\overline{CB}=k\overline{a}$$ where $$k>0$$ and $$x, y$$ are the midpoints of $$DB$$ and $$AC$$ respectively such that $$|\overline{a}|=17$$ and $$|\overline{XY}|=4$$, then $$\mathrm{k}=$$
    Solution

    $$AY=CY$$ ....... $$[y$$ is the midpoint of $$AC]$$  
    $$DX=BX$$ ....... $$[x$$ is the midpoint of $$DB]$$

    Let D be the origin
    Position vector(P.V.) of $$A=\vec{a}$$        
    P.V. of $$B=\vec{a}+\vec{b}$$  ....... $$[\because  \overline{AB}=\bar{b}]$$
    P.V. of $$C=-(k-1)\vec{a}+\vec{b}$$ ....... $$[\because  \overline{CB}=k\bar{a}]$$
    P.V. of $$ x=\dfrac{\vec{a}+\vec{b}}{2}$$
    P.V. of $$ y=\dfrac{-k\vec{a}+2\vec{a}}{2}+\dfrac{\vec{b}}{2}$$
    $$\vec{XY}=\dfrac{\vec{a}-k\vec{a}}{2}$$
    $$\left | \vec{XY} \right |=\dfrac{\left | a \right |}{2}\sqrt{(1-k)^{2}}$$
    $$\implies \dfrac{8}{17}=1-k$$
    $$\implies k=\dfrac{9}{17}$$

  • Question 10
    1 / -0
    The incentre of the triangle formed by the points $$ { \hat { i }  }+{ \hat { j }  }+{ \hat { k }  },$$ $$ 4{ \hat { i }  }+{ \hat { j }  }+{ \hat { k }  }$$, and $$4{ \hat { i }  }+5{ \hat { j }  }+\hat { k }$$  is
    Solution

    Position vector of $$A$$ is $$\hat i+\hat j+\hat k$$, gives coordinates as $$(1,1,1)$$.

    Position vector of $$B$$ is $$4\hat i+\hat j+\hat k$$, gives coordinates as $$(4,1,1)$$.
    Position vector of $$C$$ is $$4\hat i+5\hat j+\hat k$$, gives coordinates as $$(4,5,1)$$.

    $$\vec{AB} = \vec B - \vec A = 3\hat i$$
    $$\vec {BC} = \vec C - \vec B = 4\hat j$$
    $$\vec {AC} = \vec C - \vec A = 3\hat i+4\hat j$$
    Here, we can see that $$\triangle ABC$$ is a right angled triangle with right angle at $$B$$.

    $$|\vec{AB}| = \sqrt{3^2} = 3$$
    $$|\vec{BC}| = \sqrt{4^2} = 4$$
    $$|\vec{AC}| = \sqrt{3^2+4^2} = 5$$

    Point of Intersection of angle bisectors can be found using formula:
    $$I = \dfrac{|\vec{BC}|\times\vec A + |\vec{CA}|\times\vec B + |\vec{AB}|\times\vec C}{|\vec{AB}| + |\vec{BC}| + |\vec{CA}|}$$

    $$I = \dfrac{4\times(\hat i+\hat j+\hat k) + 5\times(4\hat i+\hat j+\hat k) + 3\times(4\hat i+5\hat j+\hat k)}{3+4+5}$$

    $$\Rightarrow I = \dfrac{1}{12}(36\hat i + 24\hat j+12\hat j) = 3\hat i+2\hat j+\hat k$$

    Hence, incenter will be $$3\hat i+2\hat j +\hat k$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now