Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If the vectors $$4\hat{i}-7\hat{j}-2\hat{k},\: \hat{i}+5\hat{j}-3\hat{k},\: 3\hat{i}-\lambda\hat{j}+\hat{k}$$ form a triangle then $$\lambda=$$

  • Question 2
    1 / -0

    lf $$4{\vec{i}}+7\vec{j}+8\vec{k} , 2\vec{i}+3\vec{j}+4\vec{k}$$ and $$2\vec{i}+5\vec{j}+7\vec{k}$$ are the position vectors of the vertices $$\mathrm{A},\mathrm{B}$$ and $$\mathrm{C}$$ of $$ \triangle \mathrm{A}\mathrm{B}\mathrm{C}$$, the position vector of $$D$$ the point where the bisector of $$\angle A$$ meets $$\mathrm{B}\mathrm{C}$$ is

  • Question 3
    1 / -0

    lf $$\vec{a}$$ and $$\vec{b}$$ are two non-parallel unit vectors and the vector $$\alpha\vec{a}+\vec{b}$$ bisects the internal angle between $$\vec{a}$$ and $$\vec{b}$$, then $$\alpha$$ is

  • Question 4
    1 / -0

    lf $$A=(-3,2,5), B=(-3,4,5)$$ and $$C=(-3,4,7)$$ are the position vectors of vertices of $$\Delta ABC$$ then its circumcentre is

  • Question 5
    1 / -0

    $$\hat { AB } =-3{ \hat { i }  }+4{ \hat { k }  }$$ and $$\hat { BC } =-\overline { i } -2\overline { k } $$ are the sides of the triangle $$ ABC$$ then the length of the median $$AM$$ is

  • Question 6
    1 / -0

    Two forces act at the vertex $$\mathrm{A}$$ of quadrilateral $$\mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D}$$ represented by $$\overline{AB},\ \overline{AD}$$ and two at $$\mathrm{C}$$ represented by $$\overline{CD}$$ and $$\overline{CB}$$. If $$\mathrm{E},\ \mathrm{F}$$ are mid points of $$\overline{AC}$$ and $$\overline{BD}$$ respectively, then their resultant is

  • Question 7
    1 / -0

    If point $$O$$ is the centre of a circle circumscribed about a triangle $$ABC$$. Then $$\overline{OA}\sin 2A+\overline{OB}\sin2B+\overline{OC}\sin 2C=$$

  • Question 8
    1 / -0

    Let $$G$$ and $$G^{1}$$ be the centroids of the triangles $$ABC$$ and $$A^{1}B^{1}C^{1}$$ respectively, then $$AA^{1}+BB^{1}+CC^{1}$$ is equal to

  • Question 9
    1 / -0

    The ratio in which $$\overline{i}+2\overline{j}+3\overline{k}$$ divides the join $$\mathrm{o}\mathrm{f}-2\overline{i}+3\overline{j}+5\overline{k}$$ and $$7\overline{i}-\overline{k}$$ is

  • Question 10
    1 / -0

    Orthocentre of an equilateral triangle $$ABC$$ is the origin $$\mathrm{O}$$. If $$A=\overline{a},\ B=\overline{b},\ C=\overline{c}$$ then $$\overline{AB}+2\overline{BC}+3\overline{CA}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now