Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If the vertices of a $$\Delta ABC$$ are $$A= (1,-1,-3)$$ , $$B= (2, 1, -2)$$ and $$C=(-5,2,-6)$$ then the length of the internal bisector of angle $$A$$ is

  • Question 2
    1 / -0

    The condition for the vectors $$\vec{a},\vec{b},\vec{c},\vec{d}$$ to be the sides of a parallelogram taken in order is

  • Question 3
    1 / -0

    Let $$A$$ and $$B$$ be points with position vectors $$\overline{a}$$ and $$\overline{b}$$ with respect to origin $$O$$. If the point $$C$$ on $$OA$$ is such that $$2\overline{AC}=\overline{CO}$$, $$\overline{CD}$$ is parallel to $$\overline{OB}$$ and $$|\overline{CD}|=3|\overline{OB}|$$ then $$AD$$ is

  • Question 4
    1 / -0

    The adjacent sides of a parallelogram are $$2{ \hat { i }  }+4{ \hat { j }  }-5{ \hat { k }  }$$ and $$ { \hat { i }  }+2{ \hat { j }  }{ + }3{ \hat { k }  }$$ then the unit vector parallel to a diagonal is

  • Question 5
    1 / -0

    If the diagonals of a parallelogram are $$\overline{i}+5\overline{j}-2\overline{k}$$ and $$-2\overline{i}+\overline{j}+3\overline{k}$$, then the lengths of its sides are

  • Question 6
    1 / -0

    Let $$A({\vec{a}})$$ , $$B({\vec{b}}), C({\vec{c}})$$ be the vertices of the triangle $$ABC$$ and let $$DEF$$ be the mid points of the sides $$BC, CA, AB$$ respectively. If $$P$$ divides the median $$AD$$ in the ratio $$2:1$$ then the position vector of $$P$$ is

  • Question 7
    1 / -0

    If $$I$$ is the centre of a circle inscribed in a triangle $$ABC$$, then $$|\overline{BC}|\overline{IA}+|\overline{CA}|\overline{IB}+|\overline{AB}|\overline{IC}$$ is

  • Question 8
    1 / -0

    Let $$A=2\hat{i}+4\hat{j}-\hat{k}$$, $$B=4\hat{i}+5\hat{j}{+}\hat{k}$$. If the centroid $$G$$ of the triangle $$ABC$$ is $$3\hat{i}+5\hat{j}-\hat{k}$$, then the position vector of $$C$$ is

  • Question 9
    1 / -0

    If $$\vec{{r}} {\times} \vec{{a}}=\vec{{b}}{\times}\vec{{a}};\ \vec{{r}}{\times}\vec{{b}}=\vec{{a}}{\times}\vec{{b}};\ \vec{a}\neq 0,\vec{b}\neq 0,\vec{a}\neq\lambda\vec{b};\ \vec{a}$$ is not perpendicular to $$\vec{b}$$, then $$\vec{r}=$$

  • Question 10
    1 / -0

    The plane $$2x-3y+z+6=0$$ divides the line segment joining $$(2, 4, 16)$$ and $$(3, 5, -4)$$ in the ratio

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now