$$\overrightarrow { c } =x\hat { i } +y\hat { j } $$
Now, $$\overrightarrow { b } \bot \overrightarrow { c } \Rightarrow \overrightarrow { b } .\overrightarrow { c } =0$$
$$\displaystyle \Rightarrow 4x+3y=0\Rightarrow \dfrac { x }{ 3 } =\frac { y }{ -4 } =\lambda \\ \Rightarrow x=3\lambda ,y=-4\lambda \\ \therefore \overrightarrow { c } =\lambda \left( 3\hat { i } -4\hat { j } \right) $$
Let the required vector be $$\alpha =p\hat { i } +q\hat { j } $$.
Then the projections of $$\overrightarrow{\alpha}$$ on $$\overrightarrow{b}$$ and $$\overrightarrow{c}$$ are $$\displaystyle \frac { \overrightarrow { \alpha } .\overrightarrow { b } }{ \left| b \right| } $$ and $$\displaystyle \dfrac { \overrightarrow { \alpha } .\overrightarrow { c } }{ \left| c \right| } $$ respectively.
$$\displaystyle \therefore \dfrac { \overrightarrow { \alpha } .\overrightarrow { b } }{ \left| \overrightarrow { b } \right| } =1$$ and $$\displaystyle \dfrac { \overrightarrow { \alpha } .\overrightarrow { c } }{ \left| \overrightarrow { c } \right| } =2$$
$$\Rightarrow 4p+3q=5$$ and $$3p-4q=10$$
$$\Rightarrow p=2,q=-1$$
Hence, the required vector is $$2\hat{i}-\hat{j}$$.