Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    In a triangle $$ABC, D$$ and $$E$$ are points on $$BC$$ and $$AC$$ respectively, such that $$BD=2DC, AE=3EC,$$ Let $$P$$ be the point of intersection of $$AD$$ and $$BE$$. Then $$\dfrac{BE}{PE}=$$

  • Question 2
    1 / -0

    If $$\overline{a}+\overline{b}+\overline{c}=\alpha\overline{d},\overline{b}+\overline{c}+\overline{d}=\beta\overline{a}$$, then $$\overline{a}+\overline{b}+\overline{c}+\overline{d}$$ is 

  • Question 3
    1 / -0

    If $$OABC$$ is a parallelogram with $$\vec{OB}=\vec{a},\vec{AB}=\vec{b}$$ then $$\vec{OA}=$$

  • Question 4
    1 / -0

    Let us define, the length of a vector $$a\overline{i}+b\overline{j}+c\overline{k}$$ as $$|{a}|+|{b}|+|{c}|$$. This definition coincides with the usual definition of the length of a vector $$a\overline{i}+b\overline{j}+c\overline{k}$$ if

  • Question 5
    1 / -0

    In $$\Delta ABC,\ D,\ E,\ F$$ are midpoints of the sides $$BC, CA$$ and $$AB$$ respectively. $$O$$' is the circumcentre, $$G$$' is the centroid, $$H$$' is the orthocentre and $$P$$ is any point.
    Match the following

    List IList II
    $$1) \vec{PA} +\vec{PB}+\vec{PC}$$$$a) $$$$0$$
    $$2)\vec {GA}+\vec{GB}+\vec{GC}$$$$b) \vec{OH}$$
    $$3)\displaystyle \vec{AD}+\dfrac{2}{3}\vec{BE}+\dfrac{1}{3}\vec{CF}$$$$c)\vec{ PD}+\vec{PE}+\vec{PF}$$
    $$4)\vec{OA}+\vec{OB}+\vec{OC}$$$$d){\displaystyle\dfrac{1}{2}}\vec{AC}$$

  • Question 6
    1 / -0

    Vector area is a vector quantity associated with each plane figure whose magnitude is

  • Question 7
    1 / -0

    Let $$OABC$$ be a parallelogram and $$D$$ the midpoint of $$OA$$. The ratio in which $$OB$$ divides $$CD$$ in the ratio

  • Question 8
    1 / -0

    In $$\Delta OAB$$, if $$\vec{OA}=\vec{a},\ \vec{OB}=\vec{b}.  L$$ is mid point of $$\vec{OA}$$ and $$M$$ is point on $$\vec{OB}$$ such that $$\vec{OM}:\vec{MB}=2:1$$. If $$P$$ is mid point of $$LM$$ then $$\vec{AP}=$$

  • Question 9
    1 / -0

    If the vectors $$\vec{c},\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}$$ and $$\vec{b}=\hat{j}$$ are such that $$\vec{a},\vec{c}$$ and $$\vec{b}$$ form a right handed system, then $$\vec{c}=$$

  • Question 10
    1 / -0

    The vector $$\vec{AB}=3\hat{i}+4\hat{k}$$ and $$\vec{AC}=5\hat{i}-2\hat{j}+4\hat{k}$$ are the sides of a $$\Delta ABC$$ where $$A$$ is the origin. The length of median through $${A}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now