Self Studies

Vector Algebra Test - 29

Result Self Studies

Vector Algebra Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$C$$ is the mid point of $$AB$$ and $$P$$ is any point out side $$AB$$, then
    Solution
    From above figure 
    $$\vec{PA}=\vec{CA}+\vec{BC}+\vec{PB}$$
    $$=2\vec{BC}+\vec{PB}$$
    $$=2(\vec{PC}-\vec{PB})+\vec{PB}$$
    $$\vec{PA}+\vec{PB}=2\vec{PC}$$

  • Question 2
    1 / -0
    $$ABC$$ is a triangle and $$P$$ is any point on $$BC$$. If $$PQ$$ is the resultant of the vectors $$\vec {AP},\ \vec {PB}$$ and $$\vec{PC}$$ then $$ACQB$$ is
    Solution
    $$\vec{PQ}=\vec{AP}+\vec{PB}+\vec{PC}$$
    $$\vec{PQ}-\vec{PB}=\vec{AP}+\vec{PC}$$
    $$\vec{BQ}=\vec{AC}$$  --------(1)
    $$\vec{PQ}-\vec{PC}=\vec{AP}+\vec{PB}$$
    $$\vec{CQ}=\vec{AB}$$   ---------(2)
    So $$ACQB $$ is Parallelogram. 

  • Question 3
    1 / -0
    If $$\vec{b}$$ is the vector whose initial point divides the joining $$5\hat{i}$$ and $$5\hat{j}$$ in the ratio $$\lambda :$$ $$1$$ and terminal point is at origin. lf $$|\vec{b}|\leq\sqrt{37}$$, then $$\lambda\in$$.
    Solution
    Apply section formula and we get,
    $$\vec b = \dfrac{5 \hat i + 5 \lambda \hat j}{\lambda + 1}$$
    $$|\vec b| \leq \sqrt{37}$$
    $$\therefore$$  $$25 \times {\lambda}^2 + 25 \leq ({\lambda + 1}^2) \times 37$$ 
    $$\therefore$$  $$25 \times {\lambda}^2 + 25 \leq  37 \times ({\lambda}^2 + 2\lambda + 1)$$
    $$\therefore$$  $$25 \times {\lambda}^2 + 25 \leq  37\times {\lambda}^2 + 74 \lambda + 37$$
    $$\therefore  12 \times {\lambda}^2 + 74 \lambda + 12 \geq 0.$$
    $$\therefore  6 \times {\lambda}^2 + 37 \lambda + 6 \geq 0$$  
    $$\therefore \lambda \in ( - \infty , -6] \cup \left [ \dfrac{-1}{6}, \infty \right)$$
  • Question 4
    1 / -0
    lf the Vector $$\overline{\mathrm{c}},\ \vec{\mathrm{a}}=\mathrm{x}\hat{\mathrm{i}}+\mathrm{y}\hat{\mathrm{j}}+\mathrm{z}\hat{\mathrm{k}},\ \vec{\mathrm{b}}=\hat{\mathrm{j}}$$ are such that $$\vec{\mathrm{a}},\ \vec{\mathrm{c}},\ \vec{\mathrm{b}}$$ form $$\mathrm{R}.\mathrm{H}.\ \mathrm{S}$$ then $$\vec{\mathrm{c}}=$$
    Solution
    $$\vec{b}\times \vec{a}=\vec{c}  (As   \vec{a},  \vec{c},  \vec{b}  are   in R.H.S)$$

    $$\vec{b} \times \vec{a}=\begin{vmatrix}
    \hat{i} & \hat{j} & \hat{k}\\
    0 & 1 & 0\\
    x & y & z
    \end{vmatrix} =z\hat{i}-x\hat{k}$$

    So $$\vec{c}=z\vec{i}-x\vec{k}$$
  • Question 5
    1 / -0
    If $$\vec{r}=3\hat{i}+2\hat{j}-5\hat{k},\vec{a}=2\hat{i}-\hat{j}+\hat{k}$$, $$\vec{b}=\hat{i}+3\hat{j}-2\hat{k},\ \vec{c}=-2\hat{i}+\hat{j}-3\hat{k}$$ such that $$\vec{r}=\lambda\vec{a}+\mu\vec{b}+v\vec{c}$$, then $$\mu,\ \displaystyle \frac{\lambda}{2}$$ , $$v$$ are in
    Solution
    $$(3,2,-5)=\lambda (2,-1,1)+\mu (1,3,-2)+\gamma (-2,1,-3)$$
    $$3=2\lambda +\mu -2\gamma $$
    $$2=-\lambda +3\mu +\gamma $$
    $$-5=\lambda -2\mu -3\gamma $$
    $$\begin{bmatrix}
    2 & 1 & -2\\
    -1 & 3 & 1\\
    1 & 2 & -3
    \end{bmatrix}
    \begin{bmatrix}
    \lambda\\
    \mu\\
    \nu
    \end{bmatrix}=\begin{bmatrix}
    3\\
    2\\
    -5
    \end{bmatrix}$$
    $$R_{2}\rightarrow R_{2}+R_{3}$$
    $$\begin{bmatrix}
    2 & 1 & -2\\
    0 & 1 & -2\\
    1 & -2 & -3
    \end{bmatrix}
    \begin{bmatrix}
    \lambda\\
    \mu\\
    \nu
    \end{bmatrix}=\begin{bmatrix}
    3\\
    -3\\
    -5
    \end{bmatrix}$$
    $$R_{1}\rightarrow R_{1}-R_{2}$$
    $$\begin{bmatrix}
    2 & 0 & 0\\
    0 & 1 & -2\\
    1 & -2 & -3
    \end{bmatrix}
    \begin{bmatrix}
    \lambda\\
    \mu\\
    \nu
    \end{bmatrix}=\begin{bmatrix}
    6\\
    -3\\
    -5
    \end{bmatrix}$$
    $$\lambda =3  \gamma =2  \mu =1$$
  • Question 6
    1 / -0
    $$\overline{a}=x\hat {i}+y\hat {j}+z\hat {k},\ \overline{b}=\hat {j}$$, then the vector $$\overline{c}$$ for which $$\overline{a},\overline{b},\ \overline{c}$$ form a right hand triangle
    Solution
    $$\overline{a},\overline{b},\overline{c}$$ form a right handed triangle.
    When this holds true, $$\overline{c} = \overline{a} \times \overline{b}$$
    Thus, taking cross product , we get $$\overline{c} = -z \overline{i} + x \overline{k}$$
  • Question 7
    1 / -0
    If $$\vec a=\hat {i}+2\hat {j}-3\hat {k}$$ and $$\vec {b}=2\hat {i}-\hat {j}-\hat {k}$$ then the ratio between the projection of $$\vec b$$ on $$\vec {a}$$ and the projection of $$\vec {a}$$ on $$\vec {b}$$ is
    Solution
    Projection of $$\overline{b}$$ on $$\overline{a}=\dfrac{\overline{b}\cdot\overline{a}}{|\overline{a}|}$$
    Projection of $$\overline{a}$$ on $$\overline{b}=\dfrac{\overline{b}\cdot\overline{a}}{|\overline{b}|}$$
    Ratios$$=|\overline{b}|:|\overline{a}|$$
    $$=\sqrt{6} :\sqrt{14} = \sqrt{3} : \sqrt{7}$$
  • Question 8
    1 / -0
    Which of the following is a true statement. 
    Solution
    We know that $$\vec {a}\times\vec {b}$$ is perpendicular to both $$\vec {a}$$ and $$\vec {b}$$
    Hence $$(\vec {a}\times \vec {b})\times \vec {c}$$ is perpendicular to both $$\vec {a}\times \vec {b}$$ and $$\vec {c}$$
  • Question 9
    1 / -0
    Given,  $$|\vec {a}|=|\vec {b}|=1$$ and $$|\vec {a}+\vec {b}|=\sqrt{3}$$. If $$\vec {c}$$ be a vector such that $$\vec {c}-\vec {a}-2\vec {b}=3(\vec {a}\times\vec {b})$$ , then $$\vec {c}.\vec {b}$$ is equal to
    Solution
    We have $$\overline{c}-\overline{b}=\overline{a}-\overline{b}+2$$
    $$\left | \overline{a}+\overline{b} \right |=\sqrt{\bar a^{2}+\bar b^{2}+2\bar \cdot \bar b}$$$$3=1+1+2\left ( \overline{a\cdot} \overline{b}\right )$$
    $$\dfrac {1}{2}=\overline{a}-\overline{b}$$
    $$\overline{c}-\overline b=\dfrac {5}{2}$$
  • Question 10
    1 / -0
    If the position vector of a point $$A$$ is $$\overrightarrow { a } +\overrightarrow { 2b } $$ and $$\overrightarrow { a }$$ divides $$\overrightarrow{AB}$$ in the ratio $$2:3$$, then the position vector of $$B$$ is
    Solution
    If $$\overrightarrow{x}$$ is the position vector of $$B$$, then $$\overrightarrow{a}$$ divides $$\overrightarrow{AB}$$ in the ration $$42:3$$
    $$\displaystyle \therefore \overrightarrow { a } =\dfrac { 2\overrightarrow { x } +3\left( \overrightarrow { a } +2\overrightarrow { b }  \right)  }{ 2+3 } $$

    $$\Rightarrow 5\overrightarrow { a } -3\overrightarrow { a } -6\overrightarrow { b } =2\overrightarrow { x } \Rightarrow \overrightarrow { x } =\overrightarrow { a } -3\overrightarrow { b } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now