Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A, B$$ are two points on the curve $$y=x^{2}$$ in the $$x-y$$ plane satisfying $$\vec{OA}.\hat{i}=1$$ and $$\vec{OB}.\hat{i}=-2$$ then the length of the vectors $$2\vec{OA}-3\vec{OB}$$ is

  • Question 2
    1 / -0

    In a tetrahedron if two pairs of opposite edges are at a right angles then the third pair is inclined at an angle of

  • Question 3
    1 / -0

    If $$\overrightarrow { a } .\overrightarrow { b } =0$$ and also $$\overrightarrow { a } \times \overrightarrow { b } =0,$$ then

  • Question 4
    1 / -0

    Let $$G$$ be the centroid of $$\triangle ABC$$. If $$\overrightarrow{AB}=\overrightarrow{a}$$ and $$\overrightarrow{AC}=\overrightarrow{b},$$ then $$\overrightarrow{AG}$$, in terms of $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ is

  • Question 5
    1 / -0

    If $$\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $$ are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then the centroid of the triangle satisfies which of the following relation?

  • Question 6
    1 / -0

    If $$\alpha(\vec a \times \vec b)+\beta(\vec b \times \vec c)+\gamma(\vec c \times \vec {a})=\vec{0}$$ and at least one of the scalars $$\alpha,\ \beta,\gamma$$ is non-zero, then the vectors $$\vec{a},\vec{b},\vec{c}$$ are

  • Question 7
    1 / -0

    If $$I$$ is the center of a circle inscribed in a triangle $$ABC$$, then $$|BC|IA+|CA|IB+|AB|IC$$

  • Question 8
    1 / -0

    lf the four points $$\overline{a},\overline{b},\overline{c},\overline{d}$$ are coplanar then $$[\overline{b}\overline{c}\overline{d}]+[\overline{c}\overline{a}\overline{d}]+[\overline{a}\overline{b}\overline{d}]=$$

  • Question 9
    1 / -0

    A point $$O$$ is the centre of a circle circumscribed about a triangle $$ABC$$, then $$\vec{OA}\sin 2A + \vec{OB}\sin 2B + \vec{OC} \sin 2C $$ is equal to

  • Question 10
    1 / -0

    If $$\vec {a}=x\hat {i}+12\hat {j}-\hat {k},\vec {b}=2\hat {i}+2x\hat {j}+\hat {k}$$ and $$\vec {c}=\hat {i}+\hat {k}$$ and given that the vectors $$\vec {a},\vec {b},\vec {c}$$ form a right handed system, then the range of $$x$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now