Self Studies

Vector Algebra Test - 31

Result Self Studies

Vector Algebra Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$G$$ is the centroid of a  $$\Delta ABC$$, then $$\vec{GA} + \vec{GB} + \vec{GC}$$ is equal to
    Solution
    We have $$\vec{GB}+\vec{GC} = (1+1) \vec{GD} = 2 \vec{GD}$$, where $$D$$ is the midpoint of $$BC$$. Therefore,
    $$\vec{GA}+ \vec{GB} + \vec{GC} = \vec{GA} + 2\vec{GD}$$
    $$= \vec{GA} - \vec{GA} =0$$
    $$(\because  G$$ divides $$AC$$  in the ration $$2 : 1, \therefore 2 \vec{GD} = - \vec{GA})$$
  • Question 2
    1 / -0
    In triangle ABC, which of the following is not true.
    Solution

    $${\textbf{Hint: Use Triangle Law of vector addition}}$$

    $${\textbf{Step 1: Find the resultant of two vetors}}$$

              $$ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} $$

    $${\textbf{Step 2: Solve the vector sum and Compare with the options}}$$

              $$ \overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {AC}  = \overrightarrow 0 $$

             $${\Rightarrow}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow 0 $$

            $${\Rightarrow}\overrightarrow {AB}  - \overrightarrow {CB}  + \overrightarrow {CA}  = \overrightarrow 0 $$

               $${\text{But }}$$$$\overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {CA}  \ne \overrightarrow 0 $$

    $${\textbf{Final Answer: Option (C) is incorrect}}$$

  • Question 3
    1 / -0
    Six vectors, $$\vec a$$ to $$\vec f$$ , all of magnitude 1 and directions indicated in the figure ( Consider all of them to be originating at origin ). Which of the following statement is true?

    Solution
    We have, assuming unit magnitude for all vectors:
    $$ \overrightarrow{a}= \overrightarrow{i} $$
    $$ \overrightarrow{b}= \overrightarrow{-j} $$
    $$ \overrightarrow{c}= \overrightarrow{i} $$
    $$ \overrightarrow{d}= \overrightarrow{j} $$
    $$ \overrightarrow{e}= \overrightarrow{-i} $$
    $$ \overrightarrow{f}= \overrightarrow{-i} + \overrightarrow{j} $$
    $$\therefore \overrightarrow{d} + \overrightarrow{e} = \overrightarrow{j} + \overrightarrow{-i} $$
  • Question 4
    1 / -0
    In triangle $$ABC$$, $$\angle A = 30^o$$, $$H$$ is the orthocentre and $$D$$ is the midpoint of $$BC$$. Segment $$HD$$  is produced to $$T$$  such that $$HD = DT$$. The length $$AT$$ is equal to
    Solution
    Let us assume that the circumcenter of $$\triangle ABC$$ is $$O$$ and is situated at the origin of the coordinate plane. Hence, the vector notation for all the vertices is
    $$\overrightarrow{OA}=\overrightarrow{a}$$
    $$\overrightarrow{OB}=\overrightarrow{b}$$
    $$\overrightarrow{OC}=\overrightarrow{c}$$
    Also, as $$O$$ is the circumcenter of $$\triangle ABC$$,
    $$\overrightarrow{a}=\overrightarrow{b}=\overrightarrow{c}= R$$ (circum-radius)
    Since $$D$$ is mid-point of $$BC$$, $$\overrightarrow{d}=\dfrac{\overrightarrow{b}+\overrightarrow{c}}{2}$$
    $$\therefore \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{d}$$
    Also, $$2\overrightarrow{OD}=\overrightarrow{AH}$$ as $$H$$ is the orthocentre and it divides height in 2:1 ratio.
    $$\therefore \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{d}=\overrightarrow{OA}+\overrightarrow{AH} = \overrightarrow{OH}=\overrightarrow{h}\ \dots\ (1)$$
    According to given information, $$HD=DT$$
    $$\implies \dfrac{\overrightarrow{b}+\overrightarrow{c}}{2}=\dfrac{\overrightarrow{h}+\overrightarrow{t}}{2}$$
    $$\implies \dfrac{\overrightarrow{b}+\overrightarrow{c}}{2}=\dfrac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{t}}{2}$$
    $$\implies \overrightarrow{a}=-\overrightarrow{t}$$
    $$\implies \overrightarrow{AT}=2\overrightarrow{a}$$
    $$\implies |\overrightarrow{AT}|=2|\overrightarrow{a}|=2R$$
    Also, from property of side-length of triangle,
    $$BC=2RsinA=R$$ ($$\because\angle A = 30^{\circ}$$)
    $$\therefore AT=2BC$$

  • Question 5
    1 / -0
    $$'I'$$ is the incentre of triangle of $$ABC$$ whose corresponding sides are $$a, b, c,$$ respectively, $$a\vec{IB} + b\vec{IB} + c\vec{IC}$$ is always equal to
    Solution
    Let the incentre be at the origin and be
    $$A(\vec{p}), B(\vec{q}) $$ and $$C(\vec{r})$$., then

    $$\vec{IA} = \vec{p}, \vec{IB} = \vec{q}$$ and $$\vec{IC} = \vec{r}$$.

    Incentre $$I$$ is $$\displaystyle \dfrac{a\vec{p} + b\vec{q}+c\vec{r}}{a + b + c}$$, where $$p = BC, q = AC$$ and $$r = AB$$

    Incentre is at the origin. Therefore,
    $$\displaystyle \dfrac{a \vec{p} + b\vec{q} + c\vec{r}}{a + b + c} = \vec{0} $$, or
     $$a\vec{p} + b\vec{q} + c\vec{r} = 0$$
    $$\Rightarrow a\vec{IA} + b\vec{IB} + c\vec{IC} = \vec{0}$$
  • Question 6
    1 / -0
    Let $$\vec{a}, \vec{b}$$ and $$\vec{c}$$ be unit vectors such that $$\vec{a} + \vec{b} - \vec{c} = 0$$. If the area of triangle formed by vectors $$\vec{a}$$ and $$\vec{b}$$ is $$A$$, then what is the value of $$4A^2$$?
    Solution
    Given, $$\vec{a} + \vec{b} = \vec{c}$$

    Now vector $$\vec{c}$$ is along the diagonal of the parallelogram which has adjacent side vectors $$\vec{a}$$ and $$\vec{b}$$. 

    Since $$\vec{c}$$ is also a unit vector, triangle formed by vectors $$\vec{a}$$ and $$\vec{b}$$ is an equilateral triangle, then
    Area of triangle $$A= \displaystyle \dfrac{\sqrt{3}}{4}$$

    $$4A^2=4 \left(\dfrac{\sqrt{3}}{4} \right)^2=\dfrac{3}{4}$$
  • Question 7
    1 / -0
    In a trapezium, vector $$\vec{BC} = \alpha \vec{AD}$$. Also, $$\vec p = \vec{AC} + \vec{BD}$$ is collinear with $$\vec{AD}$$ and $$\vec p = \mu \vec{AD}$$, then which of the following is true?
    Solution
    Let $$A$$ be the origin. 
    $$\vec BC = \vec c - \vec b = \alpha \vec d$$ and $$\vec p = \vec{AC} + \vec{BD} = \mu  AD$$
    Hence, $$\vec p = \vec c + \vec d - \vec b = \mu \vec d$$
    Using $$\vec c - \vec b = \alpha \vec d$$
    $$\Rightarrow \alpha + 1 = \mu$$
  • Question 8
    1 / -0
    $$P(\vec{p})$$ and $$Q(\vec{q})$$ are the position vectors of two fixed points and $$R(\vec{r})$$ is the position vector of a variable point. If $$R$$ moves such that $$(\vec{r} - \vec{p}) \times (\vec{r} - \vec{q}) = \vec{0}$$, then the locus of $$R$$ is
    Solution
    $$(\vec{r}-\vec{p})\times(\vec{r}-\vec{q})=0$$

    $$\vec{r}\times(\vec{r}-\vec{q})-\vec{p}\times(\vec{r}-\vec{q})=0$$

    $$\vec{r}\times\vec{r}-\vec{r}\times\vec{q}-\vec{p}\times\vec{r}+\vec{p}\times\vec{q}=0$$

    $$\vec{p}\times\vec{q}-\vec{r}\times\vec{q}-\vec{p}\times\vec{r}=0$$

    $$\vec{p}\times\vec{q}-\vec{r}\times\vec{q}+\vec{r}\times\vec{p}=0$$

    $$\vec{p}\times\vec{q}+\vec{r}\times(\vec{p}-\vec{q})=0$$

    $$\vec{p}\times\vec{q}=\vec{r}\times(\vec{q}-\vec{p})$$

    Therefore
    $$\vec{r}=\vec{p}+t(\vec{q}-\vec{p})$$

    This represents a line passing through P and Q.
  • Question 9
    1 / -0
    $$A, B, C$$ and $$D$$ have position vectors $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$, respectively, such that $$\vec{a} - \vec{b} = 2 (\vec{d} - \vec{c})$$, then
    Solution
    Given that 
    $$\vec{a} - \vec{b} = 2 (\vec{d} - \vec{c})$$

    $$\therefore \displaystyle \frac{\vec a + 2 \vec c}{2 + 1} = \frac{\vec b + 2 \vec d}{2 + 1}$$

    Hence, $$AC$$ and $$BD$$ trisect each other as $$L.H.S$$ is the position vector of a point trisecting $$A$$ and $$C$$, and $$R.H.S$$. that of $$B$$ and $$D$$.
  • Question 10
    1 / -0
    Let $$ABC$$ be a triangle whose centroid is $$G$$, orthocentre is $$H$$ and circumcentre is the origin '$$O$$'. If $$D$$ is any point in the plane of the triangle such that no three of $$O, A, C$$ and $$D$$ are collinear satisfying the relation $$\vec{AD} + \vec{BD} + \vec{CH} + 3 \vec{HG} = \lambda \vec{HD}$$, then what is the value of the scalar $$'\lambda'$$?
    Solution
    We know that in vector 
    $$\vec{AB}=\vec{OB}-\vec{OA}$$ where O is the origin
    SO from ques 
    $$\vec{AD}+\vec{BD}+\vec{CH}+3\vec{HG}=\lambda\vec{HD}$$
    $$\vec{OD}-\vec{OA}+\vec{OD}-\vec{OB}+\vec{OH}-\vec{OC}+3\vec{OG}-3\vec{OH}=\lambda\vec{HD}$$
    $$2\vec{OD}-2\vec{OH}-\vec{OA}-\vec{OB}-\vec{OC}+3\vec{OG}=\lambda\vec{HD}$$
    $$2(\vec{OD}-\vec{OH})-\vec{OA}-\vec{OB}-\vec{OC}+3\vec{OG}=\lambda\vec{HD}$$
    $$2\vec{HD}-\vec{OA}-\vec{OB}-\vec{OC}+3\vec{OG}=\lambda\vec{HD}$$
    Comparing both sides 
    $$\lambda=2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now