Let us assume that the circumcenter of $$\triangle ABC$$ is $$O$$ and is situated at the origin of the coordinate plane. Hence, the vector notation for all the vertices is
$$\overrightarrow{OA}=\overrightarrow{a}$$
$$\overrightarrow{OB}=\overrightarrow{b}$$
$$\overrightarrow{OC}=\overrightarrow{c}$$
Also, as $$O$$ is the circumcenter of $$\triangle ABC$$,
$$\overrightarrow{a}=\overrightarrow{b}=\overrightarrow{c}= R$$ (circum-radius)
Since $$D$$ is mid-point of $$BC$$, $$\overrightarrow{d}=\dfrac{\overrightarrow{b}+\overrightarrow{c}}{2}$$
$$\therefore \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{d}$$
Also, $$2\overrightarrow{OD}=\overrightarrow{AH}$$ as $$H$$ is the orthocentre and it divides height in 2:1 ratio.
$$\therefore \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{d}=\overrightarrow{OA}+\overrightarrow{AH} = \overrightarrow{OH}=\overrightarrow{h}\ \dots\ (1)$$
According to given information, $$HD=DT$$
$$\implies \dfrac{\overrightarrow{b}+\overrightarrow{c}}{2}=\dfrac{\overrightarrow{h}+\overrightarrow{t}}{2}$$
$$\implies \dfrac{\overrightarrow{b}+\overrightarrow{c}}{2}=\dfrac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{t}}{2}$$
$$\implies \overrightarrow{a}=-\overrightarrow{t}$$
$$\implies \overrightarrow{AT}=2\overrightarrow{a}$$
$$\implies |\overrightarrow{AT}|=2|\overrightarrow{a}|=2R$$
Also, from property of side-length of triangle,
$$BC=2RsinA=R$$ ($$\because\angle A = 30^{\circ}$$)
$$\therefore AT=2BC$$