Self Studies

Vector Algebra Test - 33

Result Self Studies

Vector Algebra Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$P, Q$$ have position vectors $$\vec {a}$$ & $$\vec {b}$$ relative to the origin '$$O$$' and $$ X, Y$$  divide $$\vec{PQ}$$ intermally and extemally respectively in the ratio $$2:1$$, then vector $$\vec{XY}= $$
    Solution
    $$X$$ divides $$\vec{PQ}$$ internally in $$2:1$$. Thus, $$\vec X = \dfrac{\vec a + 2\vec b}{2 + 1}$$
    $$Y$$ divides $$\vec{PQ}$$ externally in $$2:1$$. Thus, $$\vec Y = \dfrac{2\vec b - \vec a}{2 - 1}$$
    $$\vec X = \dfrac{\vec a + 2\vec b}{3}$$ and $$\vec Y = 2\vec b - \vec a$$
    $$\therefore \vec{XY} = \vec Y - \vec X = \dfrac{6\vec b - 3\vec a -\vec a -2\vec b}{3}$$
    $$\vec{XY}= \dfrac{4\vec b - 4\vec a}{3}$$
  • Question 2
    1 / -0
    If . and $$\times $$ represent dot product and cross product respectively then which of the following is meaningless?
    Solution
    Cross product can only occur for two vectors.
    $$a.b$$ is just a scalar quantity.
    Hence the option $$D$$ is meaningless.
  • Question 3
    1 / -0
    If $$\vec{a}.\vec{b}=0$$ and $$\vec{a}\times \vec{b}=0$$ then
    Solution
    $$\vec{a}.\vec{b} = 0$$ and $$\vec{a} \times \vec{b} = 0$$

    $$\vec{a}.\vec{b} = ab \cos{\theta}$$ and $$|\vec{a} \times \vec{b}| = ab \sin{\theta}$$

    Since both of them are simultaneously $$0$$ and $$\cos{\theta}, \sin{\theta}$$ cannot be simultaneously $$0$$, we get either $$a$$ or $$b$$ has to be $$0$$.
  • Question 4
    1 / -0
    A straight line $$r=a+\lambda b$$ meets the plane $$r.n=0$$ in $$P$$. The position vector of $$P$$ is
    Solution
    A straight line $$r=a+\lambda b$$ meets the plane $$r.n=0$$ in $$P$$ for which $$\lambda$$ is given by
    $$\displaystyle \left( a+\lambda b \right) .n=0\Rightarrow \lambda =-\frac { a.n }{ b.n } $$
    Thus, the position vector of $$P$$ is
    $$\displaystyle r=a-\frac { a.n }{ b.n } b$$ $$[$$ putting the value of $$\lambda$$ in $$r=a+\lambda b]$$
  • Question 5
    1 / -0
    $$P$$ is a point on the line through the point $$A$$ whose position vector is $$\overrightarrow{a}$$ and the line is parallel to the vector $$\overrightarrow{b}$$. If $$PA=6$$, the position vector of $$P$$ is
    Solution
    Line is parallel to vector $$\overrightarrow{b}$$
    The required vector is at a distance of 6 units from $$\overrightarrow{a}$$
    So, the required position vector will be $$\overrightarrow{a} + \dfrac{6}{|\overrightarrow{b}|} \overrightarrow{b}$$ since we need a unit vector in the direction of $$\overrightarrow{b}$$
  • Question 6
    1 / -0
    If $$G$$ and $$G'$$ be the centroids of the triangles $$ABC$$ and $$A'B'C'$$ respectively, then $$\overrightarrow { AA' } +\overrightarrow { BB' } +\overrightarrow { CC' } =$$
    Solution
    Let P.V. of $$A\left( \overrightarrow { a }  \right) ,B\left( \overrightarrow { b }  \right) ,C\left( \overrightarrow { c }  \right) ,A'\left( \overrightarrow { { a }_{ 1 } }  \right) ,B'\left( \overrightarrow { { b }_{ 1 } }  \right) ,C'\left( \overrightarrow { { c }_{ 1 } }  \right) $$

    Now P.V. of $$\displaystyle G=\dfrac { \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c }  }{ 3 } $$;

    Similarly $$\displaystyle G'=\dfrac { \overrightarrow { { a }_{ 1 } } +\overrightarrow { { b }_{ 1 } } +\overrightarrow { { c }_{ 1 } }  }{ 3 } $$

    Now $$\overrightarrow { AA' } =\overrightarrow { { a }_{ 1 } } -\overrightarrow { a } ,\overrightarrow { BB' } =\overrightarrow { { b }_{ 1 } } -\overrightarrow { b } ,\overrightarrow { CC' } =\overrightarrow { { c }_{ 1 } } -\overrightarrow { c } $$

    So $$\overrightarrow { AA' } +\overrightarrow { BB' } +\overrightarrow { CC' } =\left( \overrightarrow { { a }_{ 1 } } +\overrightarrow { { b }_{ 1 } } +\overrightarrow { { c }_{ 1 } }  \right) -\left( \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c }  \right) $$

    $$\displaystyle =3\left( \dfrac { \overrightarrow { { a }_{ 1 } } +\overrightarrow { { b }_{ 1 } } +\overrightarrow { { c }_{ 1 } }  }{ 3 } -\dfrac { \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c }  }{ 3 }  \right) =3\overrightarrow { GG' } $$

  • Question 7
    1 / -0
    Five coplanar forces of equal magnitudes $$10 N$$ each, act at a point such that the angle between any two consecutive forces is same. The magnitude of their resultant is :
    Solution
    As the angle between any two consecutive forces have  the same value $${ =72}^{\circ}$$  and all the forces are of equal magnitude. Hence their resultant is zero.
  • Question 8
    1 / -0
    Let $$\overrightarrow{AB}=3\hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{AC}=\hat{i}-\hat{j}+3\hat{k}$$. If the point $$P$$ on the line segment $$BC$$ is equidistant from $$AB$$ and $$AC$$ then $$\overrightarrow{AP}$$ is
    Solution
    Since $$P$$ is equidistant from $$AC\  \&\  BC,$$ it lies on the angle bisector of $$\angle{BAC}$$
    Let us also assume that $$A$$ is the origin.

    So, $$\overrightarrow{P} = x\dfrac{3\hat{i} + \hat{j} - \hat{k} + \hat{i} - \hat{j} + 3\hat{k}}{\sqrt{11}}$$

    $$\Rightarrow \overrightarrow{P} = y{4\hat{i} + 2\hat{k}}$$

    Hence we can see the options to verify.
  • Question 9
    1 / -0
    If the vectors $$\vec{a}$$, $$\vec{b}$$, $$\vec{c}$$ and $$\vec{d}$$ are coplanar, then $$\left ( \vec{a}\times \vec{b} \right )\times \left ( \vec{c}\times \vec{d} \right )$$ is equal to
    Solution
    Since $$\vec{a}, \vec{b}, \vec{c}, \vec{d}$$ are coplanar, the cross products $$\vec{a} \times \vec{b}$$ and $$\vec{c} \times \vec{d}$$ is a vector same for both.
    $$\Rightarrow$$ their cross product will become 0 since the sine of angle between becomes 0.
  • Question 10
    1 / -0
    There are $$N$$ co-planar vectors each of magnitude $$V$$Each vector is inclined to the preceding vector at angle $$2 \pi/N$$. What is the magnitude of their resultant?

    Solution
    When vectors are arranges at an angle $$\dfrac { 2\pi  }{ N } $$ to the preceding vectors, they form an N-sided closed polygon. Adding all the sides of a polygon we get the resultant to be 0.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now