Self Studies

Vector Algebra Test - 34

Result Self Studies

Vector Algebra Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The position vectors of two vertices and the centroid of a triangle are $$\vec{i}+\vec{j}$$, $$2\vec{i}-\vec{j}+\vec{k}$$ and $$\vec{k}$$ respectively, then the position vector of the third vertex of the triangle is 
    Solution
    Let the third vertex be $$C=x\vec{i}+y\vec{j}+z\vec{k}$$
    and $$A=(1,1,0)$$, $$B=(2,-1,1)$$, $$G=(0,0,1)$$
    Hence $$G=\left (\dfrac{x_{1}+x_{2}+x_{3}}{3},\dfrac{y_{1}+y_{2}+y_{3}}{3},\dfrac{z_{1}+z_{2}+z_{3}}{3}\right)$$
    $$(0,0,1)=\left (\dfrac{1+2+x}{3},\dfrac{1-1+y}{3},\dfrac{0+1+z}{3}\right)$$
    $$(0,0,1)=\left (\dfrac{x+3}{3},\dfrac{y}{3},\dfrac{z+1}{3}\right)$$
    Hence $$x+3=0$$ gives $$x=-3$$
    $$\dfrac{y}{3}=0$$ gives $$y=0$$
    And $$\dfrac{z+1}{3}=1$$ gives $$z=2$$
    Hence $$C=-3\vec{i}+2\vec{k}$$.
  • Question 2
    1 / -0
    $$\displaystyle R(\bar{r})$$ is any point on a semi-circle, $$\displaystyle P(\bar{p})$$ and $$\displaystyle Q(\bar{q})$$ are the position vector of the end point of the diameter of that semi-circle, then $$\displaystyle \overline{PR}\cdot \overline{QR}$$ is equal to
    Solution
    If any point on the semi-circle lies and we join that point to the end points of diameter then the angle formed between them is always normal or 90
    So the angle between $$\vec{PR}\ and\ \vec{QR}$$ be 90 
    $$\vec{PR}\cdot\vec{QR}=\left |\vec{PR}\right | \left |\vec{QR}\right |\cos90$$
    $$\vec{PR}\cdot\vec{QR}=\left |\vec{PR}\right | \left |\vec{QR}\right |\times0$$
    $$\vec{PR}\cdot\vec{QR}=0$$
  • Question 3
    1 / -0
    In a triangle OAB, E is the mid-point of OB and D is a point on AB such that AD: DB = 2 : 1. If OD and AE intersect at P, determine the ratio OP : PD using vector methods.
    Solution
    With $$O$$ as origin let $$a$$ and $$b$$ be the position vectors of $$A$$ and $$B$$ respectively.
    Then the position vector of $$E$$, the mid-point of $$OB$$, is $$\displaystyle\frac{b}{2}$$ 
    Again, since $$AD: DB=2:1$$, the position vector of $$D$$ is $$\displaystyle \frac{1\cdot a+2b}{1+2}=\frac{a+2b}{3} $$
    Equation of $$OD$$ and $$AE$$ are $$\displaystyle r=t\frac{a+2b}{3} $$   ...(1)
    and $$\displaystyle r=a+s\left ( \frac{b}{2}-a  \right )$$ or $$\displaystyle r=\left ( 1-s \right )a+s\frac{b}{2}$$   ...(2)
    If they intersect at $$p$$, then we will have identical values of $$r$$. 
    Hence comparing the coefficients of $$a$$ and $$b$$, we get 
    $$\displaystyle \frac{t}{3}=1-s,\frac{2t}{3}=\frac{s}{2}\therefore t=\frac{3}{5}$$ or $$\displaystyle s=\frac{4}{5}.$$
    Putting for t in (1) or for s in (2), we get the position vector of point of intersection $$P$$ as $$\displaystyle \frac{a+2b}{5}$$   ...(3)
    Now let $$P$$ divide $$OD$$ in the ratio $$\displaystyle\lambda :1.$$ 
    Hence by ratio formula the $$P.V.$$ of $$P$$ is $$\displaystyle \dfrac{\dfrac{\lambda \left ( a+2b \right )}{3}+1.0}{\lambda +1}=\dfrac{\lambda }{3\left(\lambda +1 \right )}\left ( a+2b \right )$$  ....(4) 
    Comparing (3) and (4), we get $$\displaystyle \frac{\lambda }{3\left ( \lambda +1 \right )}=\frac{1}{5}$$$$\Rightarrow\displaystyle 5\lambda =3\lambda +3\Rightarrow 2\lambda =3$$$$\displaystyle\Rightarrow \lambda =\frac{3}{2}$$
    $$\therefore OP:PD=3:2$$
  • Question 4
    1 / -0
    In a triangle ABC, D divides BC in the ratio 3 : 2 and E divides CA in the ratio 1 : 3. The lines AD and BE meet at H and CH meets AB in F. Find the ratio in which F divides AB.
    Solution
    Take $$A$$ as origin and the position vectors of $$B$$ and $$C$$ be $$b$$ and $$c$$. 
    Hence the position vectors of other points under given conditions are 
    $$\displaystyle D=\dfrac{3c+2b}{5}, E=\dfrac{1.0+3c}{4}= \dfrac{3}{4}c.$$

    Equations of $$AD$$ and $$BE$$ are
    $$AD$$ is $$\displaystyle r= t\dfrac{3c+2b}{5}$$
    $$BE$$ is $$\displaystyle r= (1- s )b+s\cdot\dfrac{3}{4}c.$$
    They intersect at $$H$$. 

    Comparing coefficients of $$b$$ and $$c$$, we get 
    $$\displaystyle \dfrac{2}{5}t= 1-s, \dfrac{3}{5}t= \dfrac{3}{4}s.\\$$
    $$\displaystyle \therefore s= \dfrac{4}{5}t.\\$$
    $$\displaystyle\therefore \dfrac{2}{5}t+\dfrac{4}{5}t= 1\\$$
    $$\displaystyle \therefore t= \dfrac{5}{6}, s=\dfrac{4}{6}\\$$
    Point $$H$$ is $$\displaystyle \dfrac{3c+2b}{6}.$$

    Now $$F$$ is point of inersection of $$AB$$ and $$CH$$ whose equations are $$r = t b$$ 
    and $$\displaystyle r=\left ( 1-s \right )c+s\dfrac{3c+2b}{6}$$ 

    Comparing the coefficients, 
    $$\displaystyle t=\dfrac{2s}{6}=\dfrac{s}{3}$$ and $$\displaystyle 1-s+\dfrac{3}{6}s=0\Rightarrow s=2\Rightarrow t=\dfrac{1}{3}s=\dfrac{2}{3}$$

    $$\displaystyle \therefore$$ P.V. of $$\displaystyle F=\dfrac{2}{3}b$$ or $$\displaystyle \vec{AF}=\dfrac{2}{3}b,\vec{FB}=b-\dfrac{2}{3}b=\dfrac{1}{3}b$$

    $$\therefore AF:FB=2:1$$

  • Question 5
    1 / -0
    The difference of the squares on the diagonals is four times the rectangle contained by either of these sides and the projection of the other upon it.
    Solution
    Again $$\displaystyle \vec{AD}^{2}-\vec{BC}^{2}= \left ( b+c \right )^{2}-\left ( c-b \right )^{2}= 4b.c$$
    $$\displaystyle = 4\vec{AB}.\vec{AC}= 4AB$$ $$($$Projection of $$AC$$ on $$AB)$$
    $$\displaystyle = 4$$ $$($$rectangle contained by $$AB$$ and projection of $$AC$$ on $$AB).$$
  • Question 6
    1 / -0
    $$ABC$$ is a $$\displaystyle \Delta $$ and $$G$$ is its centroid. If $$\displaystyle \overline{AB}= \bar{b}$$ and $$\displaystyle \overline{AC}= \bar{c}$$, then $$\displaystyle \overline{AG}$$ is equal to
    Solution
    Taking $$A$$ as origin.
    So, position vector of $$\displaystyle B=\overline{AB}=\bar{b}$$
    and position vector of $$\displaystyle C=\overline{AC}=\bar{c}$$
    Hence by centroid formula, 
    $$\displaystyle \overline{AG}$$ = position vector of $$G$$ $$\displaystyle =\dfrac{\bar{a} + \bar{b}+\bar{c}}{3}$$
    $$ = \dfrac{\bar{b}+\bar{c}}{3}$$
  • Question 7
    1 / -0
    $$\displaystyle \bar{a}= x\hat{i}+y\hat{j}+z\hat{k},\bar{b}= \hat{j}$$ then the vector $$\displaystyle \bar{c}$$ for which $$\displaystyle \bar{a},\bar{b},\bar{c}$$ form a right hand triad
    Solution

    Three vectors a, b and c are said to form a right handed system if a right threaded screw when rotated from to b the screw moves in direction of c.

    Even you can say that axb=c

    $$\vec{c}= \begin{vmatrix}\hat{i}&\hat{j}&\hat{k} \\x&y&z\\0&1&0\end{vmatrix}$$

    $$\vec{c}=\hat{i}(-z)-\hat{j}(0)+\hat{k}(x)$$

    $$\vec{c}=-z\hat{i}+x\hat{k}$$

  • Question 8
    1 / -0
    Let $$\displaystyle \bar{p}$$ and $$\displaystyle \bar{q}$$ be two distinct points. Let $$R$$ and $$S$$ be the points dividing $$PQ$$ internally and externally in the ratio $$2:3$$. If $$\displaystyle \overline{OR} \perp  \overline{OS},$$ then
    Solution
    Position vector of $$\displaystyle R=\dfrac{2\bar{q+3\bar{p}}}{5}$$
    position vector of $$\displaystyle S=\dfrac{2\bar{q-3\bar{p}}}{\left ( -1 \right )}$$
    $$\displaystyle =3\vec{p}-2\bar{q}$$
    Since $$\displaystyle \overline{OR}\perp \overline{OS}$$,
    $$\therefore \overline{OR}\cdot \overline{OS}=0$$
    $$\displaystyle \therefore 9p^{2}=4q^{2}$$
  • Question 9
    1 / -0
    Let $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$ be vectors with magnitudes $$3, 4$$ and $$5$$ respectively and $$\bar{a}+\bar{b}+\bar{c}=0$$, then the value of $$\bar{a}.\bar{b}+\bar{b}.\bar{c}+\bar{c}.\bar{a}$$ is
    Solution
    We have 
    $$|a|= 3$$
    $$|b|=4$$
    $$|c|=5$$
    Clearly (as $$c^{2}=a^{2}+b^{2}$$)
     $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$ forms the right angle $$\triangle $$
    $$\therefore $$   $$\bar{a}.\bar{b}=0$$
    $$\therefore $$   $$\bar{a}.\bar{b}+\bar{b}.\bar{c}+\bar{c}.\bar{a}=\bar{c}.\left ( \bar{a}+\bar{b} \right )$$
    $$=\bar{c}.\left ( -\bar{c} \right )$$
    $$=-\left | \bar{c} \right |^{2}=-25$$
  • Question 10
    1 / -0
    The sides of a $$\triangle$$ are in A.P, then the line joining the centroid to the incenter is parallel to
    Solution
    $$G=(\dfrac{x_{1}+x_{2}+x_{3}}{3},\dfrac{y_{1}+y_{2}+y_{3}}{3})$$

    $$=(\dfrac{bx_{1}+bx_{2}+bx_{3}}{3b},\dfrac{by_{1}+by_{2}+by_{3}}{3b})$$

    $$I=(\dfrac{ax_{1}+bx_{2}+cx_{3}}{a+b+c},\dfrac{ay_{1}+by_{2}+cy_{3}}{a+b+c})$$

    $$2b=(a+c)$$

    Hence

    $$I=(\dfrac{ax_{1}+bx_{2}+cx_{3}}{3b},\dfrac{ay_{1}+by_{2}+cy_{3}}{3b})$$

    $$\vec{IG}=\dfrac{(b-a)x_{1}+(b-c)x_{2}}{3b}i+\dfrac{(b-a)y_{1}+(b-c)y_{2}}{3b}j$$

    If 
    $$A=(x_{1},y_{1})$$
    $$B=(x_{2},y_{2})$$
    $$C=(x_{3},y_{3})$$
    Then we can see that $$\vec{IG}$$ is parallel to the intermediate side.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now