Take $$A$$ as origin and the position vectors of $$B$$ and $$C$$ be $$b$$ and $$c$$.
Hence the position vectors of other points under given conditions are
$$\displaystyle D=\dfrac{3c+2b}{5}, E=\dfrac{1.0+3c}{4}= \dfrac{3}{4}c.$$
Equations of $$AD$$ and $$BE$$ are
$$AD$$ is $$\displaystyle r= t\dfrac{3c+2b}{5}$$
$$BE$$ is $$\displaystyle r= (1- s )b+s\cdot\dfrac{3}{4}c.$$
They intersect at $$H$$.
Comparing coefficients of $$b$$ and $$c$$, we get
$$\displaystyle \dfrac{2}{5}t= 1-s, \dfrac{3}{5}t= \dfrac{3}{4}s.\\$$
$$\displaystyle \therefore s= \dfrac{4}{5}t.\\$$
$$\displaystyle\therefore \dfrac{2}{5}t+\dfrac{4}{5}t= 1\\$$
$$\displaystyle \therefore t= \dfrac{5}{6}, s=\dfrac{4}{6}\\$$
Point $$H$$ is $$\displaystyle \dfrac{3c+2b}{6}.$$
Now $$F$$ is point of inersection of $$AB$$ and $$CH$$ whose equations are $$r = t b$$
and $$\displaystyle r=\left ( 1-s \right )c+s\dfrac{3c+2b}{6}$$
Comparing the coefficients,
$$\displaystyle t=\dfrac{2s}{6}=\dfrac{s}{3}$$ and $$\displaystyle 1-s+\dfrac{3}{6}s=0\Rightarrow s=2\Rightarrow t=\dfrac{1}{3}s=\dfrac{2}{3}$$
$$\displaystyle \therefore$$ P.V. of $$\displaystyle F=\dfrac{2}{3}b$$ or $$\displaystyle \vec{AF}=\dfrac{2}{3}b,\vec{FB}=b-\dfrac{2}{3}b=\dfrac{1}{3}b$$
$$\therefore AF:FB=2:1$$