Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\bar{\alpha }$$, $$\bar{\beta }$$ and $$\bar{\gamma }$$ be vertices of a $$\triangle $$ whose circumcenter is at the origin, then orthocenter is given by

  • Question 2
    1 / -0

    If $$S$$ is the circumcenter, $$O$$ is the orthocenter of $$\triangle ABC$$, then $$\displaystyle \vec{SA}+\vec{SB}+\vec{SC}= $$

  • Question 3
    1 / -0

    For non-zero vectors $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$, $$\left | \left ( \bar{a}\times \bar{b} \right ).\bar{c} \right |=\left | \bar{a} \right |\left | \bar{b} \right |\left | \bar{c} \right |$$ iff

  • Question 4
    1 / -0

    Two planes are perpendicular to each other,one of them contains vector $$\bar{a}$$ and $$\bar{b}$$, other contains $$\bar{c}$$ and $$\bar{d}$$ then $$\left ( \bar{a}\times \bar{b} \right )\cdot \left (\bar{c}\times \bar{d}  \right )=$$

  • Question 5
    1 / -0

    In a parallelogram $$ABCD,\left| AB \right| =a,\left| AD \right| =b$$ and $$\left| AC \right| =c.$$ Then, $$DB.AB$$ has the value

  • Question 6
    1 / -0

    If a. $$\displaystyle b\neq 0,$$ find the vector r which satisfies the equations $$\displaystyle \left ( r-c \right )\times b= 0, r.a= 0$$

  • Question 7
    1 / -0

    If $$\alpha \bar{a}+\beta \bar{b}+\gamma \bar{c}=0$$, then $$\left ( \bar{a}\times \bar{b} \right )\times \left [ \left ( \bar{b}\times \bar{c} \right )\times \left ( \bar{c}\times \bar{a} \right ) \right ]$$ is equal to

  • Question 8
    1 / -0

    The position vector of the points $$A$$ and $$B$$ are respectively $$\bar{a}$$ and $$\bar{b}$$  divides $$AB$$ in the ratio $$3:1$$ and $$Q$$ iis the midpoint of $$AP$$. The position vector of $$Q$$ is

  • Question 9
    1 / -0

    For three unit vectors $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$, if $$\bar{a}+\bar{b}+\bar{c}= \bar{0}$$, then the value of $$\bar{a}\cdot \left ( \bar{b}+\bar{c} \right )+\bar{b}\cdot \left ( \bar{c}+\bar{a} \right )+\bar{c}\cdot \left ( \bar{a}+\bar{b} \right )$$ is equal to

  • Question 10
    1 / -0

    Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then $$\bar{OA}+\bar{OB}+\bar{OC}+\bar{OD}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now