Self Studies

Vector Algebra Test - 36

Result Self Studies

Vector Algebra Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ \displaystyle \bar{a}\times \bar{b}=\bar{b}\times \bar{c}=\bar{c}\times \bar{a} $$ then $$ \displaystyle \bar{a}+\bar{b}+\bar{c}=? $$
    Solution
    Let us consider $$\overline { a } +\overline { b } +\overline { c } =k$$
    Multiply with $$\overline { b } $$ on both sides , we get $$\overline { a }\times \overline { b } +\overline { b } \times\overline { b } +\overline { c }\times \overline { b } =k\times\overline { b } $$
    $$\Rightarrow k \times \overline { b } =\overline { b } \times \overline { c }+0+\overline { c }\times \overline { b } =0   $$
    Similarly we get $$k \times \overline { a } =0$$ and $$k \times \overline { c } =0$$ 
    therefore $$k=0$$ for equations to satisfy
    therefore correct option is $$C$$
  • Question 2
    1 / -0
    The vector $$\left ( \bar{a }\times\bar{b } \right )\times \left ( \bar{c }\times\bar{b } \right )$$ is
    Solution
    $$(a\times b)$$ will be a vector perpendicular to $$\vec b$$.
    $$(c\times b)$$ will be a vector perpendicular to $$\vec b$$.
    Hence
    $$(a\times b)\times (c\times b)$$ will be a vector perpendicular to both $$(a\times b)$$ and $$(c\times b)$$.
    Thus it will be a vector parallel to $$\vec b$$.
  • Question 3
    1 / -0
    In a trapezium the vector $$\overline{BC} = \alpha \overline{AD}$$. We will then find that $$\bar{p}= \overline{AC}+\overline{BD}$$ is collinear with $$\overline{AD}$$. if $$\bar{p}= \mu \overline{AD}$$ then
    Solution
    Let $$A$$ be the origin.
    So, 
    $$\alpha \vec{d} = \vec{c} - \vec{b}$$
    $$p = \vec{c} + \vec{d} - \vec{b} = \mu{\vec{d}}$$

    Combining two equations, we get $$(1 + \alpha)\vec{d} = \mu \vec{d}$$
    $$\Rightarrow \mu = \alpha + 1$$
  • Question 4
    1 / -0
    If $$C$$ is the mid point of $$AB$$ and $$P$$ is any point outside $$AB$$, then
    Solution
    Let $$\vec{p}, \vec{a}, \vec{b}, \vec{c}$$ be the position vectors of points $$P, A, B, C$$  respectively.
    $$L.H.S = \overline{PA} + \overline{PB} = \vec{p} - \vec{a} + \vec{p} - \vec{b} = 2\left(\vec{p} - \frac{\vec{a} + \vec{b}}{2}\right) = 2\vec{PC}$$
  • Question 5
    1 / -0
    Given $$A=ai+bj+ck, \ B=di+3j+4k$$ and $$C=3i+j-2k$$. If the vectors $$A,B$$ and $$C$$ form a triangle such that $$A=B+C$$ and $$area(\Delta ABC)=5\sqrt6$$, then
    Solution
    Here $$A,B,C$$ are the vectors which represent the sides of the triangle $$ABC$$ where
    $$A=ai+bj+ck\\ B=di+3j+4k\\ C=3i+j-2k$$
    Given that $$A=B+C$$
    $$\displaystyle \therefore ai+bj+ck=\left( d+3 \right) i+4j+2k\\ \Rightarrow a=d+3,b=4,c=2\\ B\times C=\begin{vmatrix} i & j & k \\ d & 3 & 4 \\ 3 & 1 & -2 \end{vmatrix}=-10i+\left( 2d+12 \right) j+\left( d-9 \right) k$$
    $$\therefore$$ Area of the $$\displaystyle \triangle ABC=\frac { 1 }{ 2 } \left| B\times C \right| =\frac { 1 }{ 2 } \sqrt { \left[ 100+{ \left( 2d+12 \right)  }^{ 2 }+{ \left( d-9 \right)  }^{ 2 } \right]  } =5\sqrt { 6 } $$
    $$\Rightarrow \sqrt { 5{ d }^{ 2 }+30d+325 } =10\sqrt { 6 } \Rightarrow 5{ d }^{ 2 }+30d+325=600\\ \Rightarrow 5{ d }^{ 2 }+30d-275=0\Rightarrow { d }^{ 2 }+6d-55=0\\ \Rightarrow \left( d+11 \right) \left( d-5 \right) =0\Rightarrow d=5,-11$$
    When $$d=5,a=8,b=4,c=2$$ and when $$d=-11,a=-8,b=4,c=2$$
  • Question 6
    1 / -0
    A unit vector perpendicular to each of the vectors $$\displaystyle 2\hat{i}+4\hat{j}-\hat{k} $$ and $$\displaystyle \hat{i}-2\hat{j}+3\hat{k} $$ forming a right handed system is
    Solution
    Unit vector perpendicular to the given 2 vectors is $$(2\hat{i} + 4\hat{j} - \hat{k}) \times (\hat{i} - 2\hat{j} + 3\hat{k})$$
    $$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -1 \\ 1 & -2 & 3 \end{vmatrix}$$
    $$= \hat{i}(12 - 2) - \hat{j}(6 + 1) + \hat{k}(- 4 - 4)$$
    $$= 10 \hat{i} - 7\hat{j} - 8\hat{k}$$
    The unit vector will be obtained by dividing the obtained vector with its modulus.
    So, we get the answer as $$\dfrac{10 \hat{i} - 7\hat{j} - 8\hat{k}}{\sqrt{100 + 49 + 64}} = \dfrac{10 \hat{i} - 7\hat{j} - 8\hat{k}}{\sqrt{213}}$$
  • Question 7
    1 / -0
    If $$ M $$ and $$ N $$ are the midpoints of the diagonals $$AC$$ and $$BD$$, respectively, of a quadrilateral $$ABCD$$, then $$\overrightarrow {AB} + \overrightarrow {AD}  + \overrightarrow {CB} + \overrightarrow {CD} $$ is equal to
    Solution

  • Question 8
    1 / -0
    Two identical particles are located at $$\overrightarrow{x}$$ and $$ \overrightarrow{y}$$ with reference to the origin of three dimensional co-ordinate system. The position vector of centre of mass of the system is given by
    Solution

  • Question 9
    1 / -0
    If $$b \neq 0,$$ then every vector $$a$$ can be written in a unique manner as the sum of a vector $$a_{||}$$ parallel to b and a vector $$a_{\perp}$$ perpendicular to $$b$$. If $$a$$ is parallel to $$ b,$$ then $$a_{||} = a $$ and $$ a_{\perp } =0$$. If $$a$$ is perpendicular to $$b$$, then $$a_{||} = 0$$ and $$a_{\perp} = a$$. The vector $$a_{||}$$ is called the projection of $$a$$ on $$b$$ and is denoted by $$proj_{b}a$$. Since $$proj_{b} a$$ is parallel to $$b$$, it is a scalar multiple of the unit vector in the direction of $$b$$, i.e., $$proj _{b} a =\lambda u_{b}$$
    The scalar $$\lambda $$ is called the component of $$a$$ in the direction of $$b$$ and is denoted by $$comp _{b} a $$. In fact, $$proj _{b} a = (a \cdot u_{b})u_{b}$$ and $$comp _{b} a = a \cdot u_{b}$$

    If $$a = -2i + j + k $$ and $$ b =4i -3j + k $$, then $$proj_{b} a$$ is equal to
    Solution
    $$\displaystyle \left| b \right| =\sqrt { 26 } ,{ u }_{ b }=\frac { b }{ \left| b \right|  } =\frac { 1 }{ \sqrt { 26 }  } \left( 4i-3j+k \right) $$
    $$\displaystyle { comp }_{ b }a=a.{ u }_{ b }=\frac { -10}{ \sqrt{26} } $$
    $$\displaystyle { Proj }_{ b }a=\left( { comp }_{ b }a \right) { u }_{ b }=-\frac { 5 }{ 13 } \left( 4i-3j+k \right) $$
  • Question 10
    1 / -0
    If the points $$P, \ Q, \ R, \ S$$ have position vectors $$\overrightarrow p, \ \overrightarrow q, \ \overrightarrow r, \ \overrightarrow s$$ such that $$\overrightarrow p - \overrightarrow q = 2(\overrightarrow s - \overrightarrow r)$$, then find out the correct one:
    Solution
    We have, $$p-q=2(s-r)$$
    $$\displaystyle \Rightarrow p+2r=q+2s\Rightarrow \frac { p+2r }{ 1+2 } =\frac { q+2s }{ 1+2 } $$
    $$\therefore$$ Point dividing $$PR$$ in the ratio $$2:1$$ is same as the point dividing $$QS$$ in the ratio $$2:1$$
    Hence $$QS$$ and $$PR$$ trisect each other.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now