Self Studies

Vector Algebra Test - 37

Result Self Studies

Vector Algebra Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ABCD$$ is a quadrilateral and $$E$$ the point of intersection of the lines joining the middle points of opposite sides. If $$O$$ is any point, then the resultant of $$OA,OB,OC$$ and $$OD$$ is equal to
    Solution
    Let $$P,Q,R,S$$ be the mid-points of sides $$BC,CD,DA,AB$$ respectively of a quadrilateral $$ABCD$$.
    BY geometry the figure formed by joining the mid-point $$P,Q,R,S$$ will be a parallelogram.
    Hence, its diagonal will bisect each other, say at $$E$$.
    Now $$\because P$$ is the mid point of $$BC$$
    $$\therefore OB+OC=2OP$$   ....(1)
    And $$R$$ is the mid point of $$AD$$
    $$\therefore OA+OD=2OR$$    ....(2)
    Adding (1) and (2), we have
    $$OA+OB+OC+OD=2(OP+OR)=2.2OE=4OE$$
    $$(\because E$$ is mid point of $$PR$$,
    $$\therefore OP+OR=2OE)$$.

  • Question 2
    1 / -0
    The components of vector $$ i + j + k $$ along vector $$i+2j+3k $$ is
    Solution
    The projection of vector $$ i + j + k $$ along vector, $$i+2j+3k $$is
    $$\quad =\displaystyle \frac{(i+j+k)\cdot (i+2j+3k)}{|i+2j+3k|}=\frac{6}{\sqrt{14}}$$
    Hence component of vector $$i+j+k$$ along $$i+2j+3k$$ is,
    $$\quad =\displaystyle \frac{6}{\sqrt{14}}.\frac{i+2j+3k}{|1+2j+3k|}=\frac{3}{7}(i+2j+3k)$$
  • Question 3
    1 / -0
    OAB is a given triangle such that $$\displaystyle \overrightarrow{OA}=\bar a$$, $$\displaystyle \overrightarrow{OB}=\bar b$$.
    Also C is a point on AB such that $$\overrightarrow{AB}=2\overrightarrow{BC}$$. State which of the following statements are correct?
    Solution
    Given $$\overline{OA}=\bar a$$ and $$\overline{OB}=\bar b$$
    $$C$$ is apoint on $$AB$$ such that $$\overline{AB}=2\overline{BC}$$
    $$\Rightarrow \bar b - \bar a = 2(\bar c - \bar b)$$
    $$\Rightarrow \bar c=\displaystyle\dfrac{3\bar b-\bar a}{2}$$
    $$\therefore \overline{AC}=\bar c-\bar a =\displaystyle\dfrac{3}{2}(\bar b-\bar a)$$
    Hence, option D.
  • Question 4
    1 / -0
    Let $$\displaystyle \overrightarrow{OA}=a$$ and  $$\displaystyle \overrightarrow{OB}=b$$ and $$\displaystyle \overrightarrow{OC}=a+b$$. What is the type of the quadrilateral $$OACB$$?
    Solution
    Given that $$\vec{OA}=a$$, $$\vec{OB}=b$$ and $$\vec{OC}=a+b$$
    and $$\vec{BC}=\vec{OC}-\vec{OB}=a$$
    and $$\vec{CA}=\vec{OA}-\vec{OC}=-b$$
    Here, $$|\vec{OA}|=|\vec{BC}|$$ and $$OA$$ is parallel to $$BC$$
    Similarly for $$\vec{OB}$$ and $$\vec{CA}$$
    Therefore, $$OABC$$ is both parallelogram and rectangle. 
  • Question 5
    1 / -0
    A vector $$a$$ can be written as
    Solution
    Let $$a=a_{1} i+a_{2} i+a_{3} k$$, so that $$a.i=a
    _{1},a\cdot j=a_{2}$$ and $$ a.k=a_{3}$$
    $$\Rightarrow a=(a\cdot i)i+(a\cdot j)j+(a\cdot k)k$$
  • Question 6
    1 / -0
    The projection of $$\bar a=3\hat i-\hat j +5\hat k$$ on $$\bar b=2\hat i+3\hat j+\hat k$$ is
    Solution
    The projection of $$\bar a=3\hat i-\hat j +5\hat k$$ on $$\bar b=2\hat i+3\hat j+\hat k$$ is $$\displaystyle\frac{\bar a\cdot \bar b}{|\bar b|}$$
    $$=\displaystyle\frac{(3\hat i-\hat j +5\hat k)\cdot (2\hat i+3\hat j+\hat k) }{|2\hat i+3\hat j+\hat k|}$$
    $$=\displaystyle\frac{8}{\sqrt {14}}$$
    Hence, option C.

  • Question 7
    1 / -0
    The triangle $$ABC$$ is defined by the vertices $$A (1, -2, 2), B(1, 4, 0)$$ and $$C(-4, 1, 1)$$. Let $$M$$ be the foot of the altitude drawn from the vertices $$B$$ to side $$AC$$. Then $$\displaystyle \overrightarrow{BM}=$$
    Solution
    $$\displaystyle\overrightarrow { MB } =\overrightarrow { AB } -\overrightarrow { AM } =\overrightarrow { AB } -\dfrac { \left( \overrightarrow { AB } .\overrightarrow { AC }  \right) \overrightarrow { AC }  }{ { \left( \overrightarrow {| AC |}  \right)  }^{ 2 } }$$
    $$\displaystyle=\left( 6\vec j-2\vec k \right) -\dfrac { \left( 6\vec j-2\vec k \right) .\left( 5\vec i+3\vec j-\vec k \right) \left( -5\vec i+3\vec j-\vec k \right)  }{ \left( 25+9+1 \right)  }$$
    $$\displaystyle=\left( 6\vec j-2\vec k \right) -\dfrac { 20 }{ 35 } \left( -5\vec i+3\vec j-\vec k \right)$$ $$\displaystyle=\dfrac { 10 }{ 7 } \left( 2\vec i+3\vec j-k \right)$$
    $$\displaystyle\therefore \overrightarrow { BM } =-\dfrac { 10 }{ 7 } \left( 2\vec i+3\vec j-\vec k \right) =\left( -\dfrac { 20 }{ 7 } \vec i-\dfrac { 30 }{ 7 } \vec j+\dfrac { 10 }{ 7 }\vec  k \right) $$

  • Question 8
    1 / -0
    Given two vectors $$a=2\hat{i}-3\hat{j}+6\hat{k}$$, $$b=-2\hat{i}+2\hat{j}-1\hat{k}$$ and $$\displaystyle \lambda$$ = ratio of the projection of $$a$$ on $$b$$ and the projection of $$b$$ on $$a,$$ then the value of $$\displaystyle \lambda $$ is
    Solution
    Projection of $$\vec{b}$$ on $$\vec{a}$$ will be 
    $$=bcos\theta$$
    $$=\dfrac{\vec{a}.\vec{b}}{a}$$ ...(i)
    Similarly 
    Projection of $$\vec{a}$$ on $$\vec{b}$$ will be 
    $$=acos\theta$$
    $$=\dfrac{\vec{a}.\vec{b}}{b}$$ ...(ii)
    Therefore 
    $$\lambda=\dfrac{ii}{i}$$

    $$=\dfrac{\dfrac{\vec{a}.\vec{b}}{b}}{\dfrac{\vec{a}.\vec{b}}{a}}$$

    $$=\dfrac{a}{b}$$

    $$=\dfrac{\sqrt{2^{2}+3^{2}+6^{2}}}{\sqrt{2^{2}+2^{2}+1^{2}}}$$

    $$=\dfrac{\sqrt{49}}{\sqrt{9}}$$

    $$=\dfrac{7}{3}$$
  • Question 9
    1 / -0
    Let $$a=i+2j+k, \ b=i-j+k$$ and $$c=i+j-k $$. A vector in the plane of $$ a$$ and $$b$$, whose projection on $$c$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$ is
    Solution
    A vector $$d$$ in the plane of $$a$$ and $$b$$ is given by, $$d =\lambda

    a+\mu b =(\lambda +\mu)i+(2\lambda -\mu)j+(\lambda+\mu)k,$$
    Now the projection of $$d$$on $$c$$ is  $$\displaystyle \frac{c\cdot

    d}{\left|c\right|}=\frac{\lambda

    +\mu+(2\lambda-\mu)-(\lambda+\mu)}{\sqrt{3}}=\frac{1}{\sqrt{3}}$$(given)
    $$\Rightarrow 2\lambda

    -\mu=1$$. Thus $$d=(3\lambda-1)i+j+(3\lambda-1)k, $$
    So  for $$ \lambda =-1$$, $$ d=- 4i+j-4k $$
  • Question 10
    1 / -0
    Four forces of magnitude P, 2P, 3P and 4P act along the four sides of a square ABCD in cyclic order. Use the vector method to find the resultant force.
    Solution
    The resultant of 4 vectors in X, Y direction are:
    resultant in X direction is 
    $$3\vec P - \vec P = 2\vec P $$      (in -ve x direction)
    In y direction is
    $$4\vec P - 2\vec P = 2\vec P$$     (in +ve y direction)

    So, the net resultant force vector is 
    $$\overset { \rightarrow  }{ R } =2\overset { \rightarrow  }{ P } +2\overset { \rightarrow  }{ P } $$
    angle between both vectors is 90
    So magnitude of resultant is $$2\sqrt { 2 } P$$  in direction of $${ 45 }^{ 0 }$$ from positive y axis in IV quadrant.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now