Self Studies

Vector Algebra Test - 40

Result Self Studies

Vector Algebra Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$AB=3i+j-k$$ and $$AC=i-j+3k$$. If the point $$P$$ on the line segment $$BC$$ is equidistant from $$AB$$ and $$AC,$$ then $$AP$$ is
    Solution
    A point equidistant from $$AB$$ and $$AC$$ is on the bisector of the angle $$BAC.$$
    A vector along the internal bisector of the angle $$BAC$$
    $$\displaystyle=\frac { AB }{ \left| AB \right|  } +\frac { AC }{ \left| AC \right|  } $$
    $$\displaystyle=\frac { 3i+j-k }{ \sqrt { 9+1+1 }  } +\frac { i-j+3k }{ \sqrt { 1+1+9 }  } =\frac { 1 }{ \sqrt { 11 }  } \left( 4i+2k \right) \\ \therefore AP=t\left( 2i+k \right) \\ \therefore BP=AP-AB=t\left( 2i+k \right) -\left( 3i+j-k \right) =\left( 2t-3 \right) i-j+\left( t+1 \right) k$$
    Also $$BC=AC-AB=\left( i-j+3k \right) -\left( 3i+j-k \right) =-2i-2j+4k$$
    But $$BP=sBC$$
    $$\therefore \left( 2t-3 \right) i-j+\left( t+1 \right) k=s\left( -2i-2j+4k \right) \\ \therefore 2t-3=-2s,-1=-2s,t+1=4s$$
    $$\displaystyle\therefore s=\frac { 1 }{ 2 } $$ and $$t=1$$
    $$\therefore AP=2i+k$$
  • Question 2
    1 / -0
    If $$4i+7j+8k, 2i+7j+7k$$ and $$3i+5j+7k$$ are the position vectors of the vertices $$A,B$$ and $$C$$ respectively of triangle $$ABC$$. The position vector of the point where the bisector of angle $$A$$ meets $$BC.$$
    Solution
    Suppose the bisector of angle $$A$$ meets $$BC$$ at $$D$$.
    Then, $$AD$$ divides $$BC$$ in the ratio $$AB:AC$$
    $$\therefore$$ position vector of $$D$$ $$\displaystyle =\frac { \left( AC \right) \left( 2i+3j+4k \right)+ \left( AB \right) \left( 2i+5j+7k \right)  }{ \left( AB \right) +\left( AC \right)  } $$
    But $$AB+-2i-4j-4k$$ and $$AC=-2i-2j-k$$
    $$\therefore AB= \sqrt{4+16+11}=6$$ and $$AC=\sqrt{4+4+1}=3$$
    $$\therefore$$ P.V. of $$D$$ is $$\displaystyle \frac { 6\left( 2i+5j+7k \right) +3\left( 2i+3j+4k \right)  }{ 6+3 } $$
    $$\displaystyle =\frac { 18i+39j+54k }{ 9 } =\frac { 1 }{ 3 } \left( 6i+13j+18k \right) $$

  • Question 3
    1 / -0
    A straight line $$'L'$$ cuts the sides $$AB,AC$$ and $$AD$$ of a parallelogram $$ABCD$$ at points $${ B }_{ 1 },{ C }_{ 1 }$$ and $${D}_{1}$$ respectively. If $$\overrightarrow { A{ B }_{ 1 } } ={ \lambda  }_{ 1 }\overrightarrow { AB } ,\overrightarrow { A{ D }_{ 1 } } ={ \lambda  }_{ 2 }\overrightarrow { AD } $$ and $$\overrightarrow { A{ C }_{ 1 } } ={ \lambda  }_{ 3 }\overrightarrow { AC } $$, then $$\displaystyle \frac { 1 }{ { \lambda  }_{ 3 } } $$ is equal to
    Solution
    Let $$\displaystyle \overrightarrow { AB } =\overrightarrow { a } ,\overrightarrow { AD } =\overrightarrow { b } ,$$
    then $$\displaystyle \overrightarrow { AC } =\overrightarrow { a } +\overrightarrow { b } $$
    Given $$\displaystyle \overrightarrow { A{ B }_{ 1 } } ={ \lambda  }_{ 2 }\overrightarrow { a } ,\overrightarrow { A{ D }_{ 1 } } ={ \lambda  }_{ 2 }\overrightarrow { b } ,\overrightarrow { A{ C }_{ 1 } } ={ \lambda  }_{ 3 }\left( \overrightarrow { a } +\overrightarrow { b }  \right) $$
    $$\displaystyle \overrightarrow { { B }_{ 1 }{ D }_{ 1 } } =\overrightarrow { { AD }_{ 1 } } -\overrightarrow { { AB }_{ 1 } } ={ \lambda  }_{ 2 }\overrightarrow { b } -{ \lambda  }_{ 2 }\overrightarrow { b } -{ \lambda  }_{ 1 }\overrightarrow { a } $$

    Since vectors $$\displaystyle \overrightarrow { { D }_{ 1 }{ C }_{ 1 } } $$ and
    $$\displaystyle \overrightarrow { { B }_{ 1 }{ D }_{ 1 } } $$ are collinear, we have
    $$\displaystyle \overrightarrow { { D }_{ 1 }{ C }_{ 1 } } =k\overrightarrow { { B }_{ 1 }{ D }_{ 1 } } $$ for some $$\displaystyle k\in R$$
    $$\displaystyle \Rightarrow \overrightarrow { { AC }_{ 1 } } -\overrightarrow { { AD }_{ 1 } } =k\overrightarrow { { B }_{ 1 }{ D }_{ 1 } } $$
    $$\displaystyle \Rightarrow { \lambda  }_{ 3 }\left( \overrightarrow { a } +\overrightarrow { b }  \right) -{ \lambda  }_{ 2 }\overrightarrow { b } =k.\left( { \lambda  }_{ 2 }\overrightarrow { b } -{ \lambda  }_{ 1 }\overrightarrow { a }  \right) $$
    $$\displaystyle \Rightarrow { \lambda  }_{ 3 }\overrightarrow { a } +\left( { \lambda  }_{ 3 }-{ \lambda  }_{ 2 } \right) \overrightarrow { b } =k.{ \lambda  }_{ 2 }\overrightarrow { b } -k.{ \lambda  }_{ 1 }\overrightarrow { a } $$

    Hence, $$\displaystyle { \lambda  }_{ 3 }=-k{ \lambda  }_{ 1 }$$ and $$\displaystyle { \lambda  }_{ 3 }-{ \lambda  }_{ 2 }=k{ \lambda  }_{ 2 }$$
    $$\displaystyle \Rightarrow k=-\frac { { \lambda  }_{ 3 } }{ { \lambda  }_{ 1 } } =\frac { { \lambda  }_{ 3 }-{ \lambda  }_{ 2 } }{ { \lambda  }_{ 2 } }$$
    $$\Rightarrow { \lambda  }_{ 1 }{ \lambda  }_{ 2 }={ \lambda  }_{ 1 }{ \lambda  }_{ 3 }+{ \lambda  }_{ 2 }{ \lambda  }_{ 3 }$$
    $$\displaystyle \Rightarrow \frac { 1 }{ { \lambda  }_{ 3 } } =\frac { 1 }{ { \lambda  }_{ 1 } } +\frac { 1 }{ { \lambda  }_{ 2 } } $$
  • Question 4
    1 / -0
    The sum of the three vectors determined by the medians of a triangle directed from the vertices is
    Solution
    $$\because D$$ is middle point of $$BC$$
    $$\displaystyle \therefore AD=\frac { AB+AC }{ 2 } $$   ...(1)
    $$E$$ is middle point of $$CA$$
    $$\displaystyle \therefore BE=\frac { BA+BC }{ 2 } $$    ....(2)
    $$F$$ is middle point of $$AB$$ 
    $$\displaystyle \therefore CF=\frac { CB+CA }{ 2 } $$    ...(3)
    Adding (1),(2) and (3), we get
    $$AD+BE+CF=0$$

  • Question 5
    1 / -0
    In a parallelogram $$ABCD$$, $$\left| AB \right| =a,\left| AD \right| =b$$ and $$\left| AC \right| =c$$. Then $$DB.AB$$ has the value
  • Question 6
    1 / -0
    If $$O$$ and $$O'$$ are circumcenter and orthocenter of a triangle $$ABC$$ then $$\left( OA+OB+OC \right) $$ equals
    Solution
    according to the properties of triangle 
    circumcentre O in triangle ABC 
    the sum of distance from circumcentre to vertices of ABC is the distance from circumcentre to orthocentre
    $$(OA+OB+OC)=OO'$$
  • Question 7
    1 / -0
    The position vectors of three consecutive vertices of a parallelogram are $$i+j+k, i+3j+5k$$ and $$7i+9j+11k$$. The position vector of the fourth vertex is
    Solution
    Let $$A\left( \overrightarrow { a }  \right) =i+j+k$$
    $$B\left( \overrightarrow { b }  \right) =i+3j+5k\\ C\left( \overrightarrow { c }  \right) =7i+9j+11k$$
    $$D\left( \overrightarrow { d }  \right) $$ is to be determined
    $$ABCD$$ is a parallelogram so $$\displaystyle \frac { 1 }{ 2 } \left( \overrightarrow { b } +\overrightarrow { d }  \right) =\frac { 1 }{ 2 } \left( \overrightarrow { a } +\overrightarrow { c }  \right) $$
    $$\overrightarrow { d } =\overrightarrow { a } +\overrightarrow { c } -\overrightarrow { b } =8i+10j+12k-\left( i+3j+5k \right) \\ =7i+7j+7k=7\left( i+j+k \right) $$

  • Question 8
    1 / -0
    Let $$G$$ be the centroid of a triangle $$ABC$$. If $$AB=a,AC=b$$ then the bisector $$AG$$, in terms of vectors $$a$$ and $$b$$ is
    Solution
    Take $$A$$ as origin.
    Then position vectors of $$A,B,C$$ are given $$0,a$$ and $$b$$ respectively.
    Then the centroid $$G$$ has position vector
    $$\displaystyle \frac { 0+a+b }{ 3 } =\frac { a+b }{ 3 } $$
    $$\displaystyle \therefore AG=\frac { a+b }{ 3 } $$
  • Question 9
    1 / -0
    The value of $$\vec i \times (\vec a \times \vec i) + \vec j \times (\vec a \times \vec j) + \vec k \times (\vec a \times \vec k)$$ is (where $$\vec i, \vec j, \vec k$$ are unit vectors)
    Solution
    $$i \times (\bar a \times i) = (i . i) \bar a - (i. \bar a) i = \bar a - (i . \bar a)i$$
    so $$i \times (\bar a \times i) + j \times (\bar a \times j) + k \times (\bar a \times k)$$
    $$= \bar a - (i . \bar a) i + \bar - (j . \bar a) j + \bar a - (k . \bar a) k$$
    $$= 3\bar a - [(i . \bar a) i + (j . \bar a) j + (k . \bar a) k]$$
    $$= 3 \bar a - \bar a = 2 \bar a$$.
  • Question 10
    1 / -0
    Let $$\vec{a}=\hat{i}+\hat{j}+3\hat{k}\;\&\;\vec{b}=2\hat{i}-3\hat{j}+4\hat{k}$$. If projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\displaystyle\frac{k}{\sqrt{29}}$$, then the value of $$(k-2)$$ is
    Solution
    GIVEN 
    $$\vec{a}=\hat{i}+\hat{j}+3\hat{k}$$
    $$\vec{b}=2\hat{i}-3\hat{j}+4\hat{k}$$
    $$Proj_{a}b=\dfrac{\vec{a}\cdot\vec{b}}{\left | \vec{b} \right |}$$
    $$Proj_{a}b=\dfrac{(\hat{i}+\hat{j}+3\hat{k})\cdot(2\hat{i}-3\hat{j}+4\hat{k})}{\left | \sqrt{2^2+(-3)^2+4^2} \right |}$$
    $$Proj_{a}b=\dfrac{2-3+12}{\sqrt{4+9+16}}$$
    $$Proj_{a}b=\dfrac{11}{ \sqrt{29}}$$
    comparing RHS with$$\dfrac{k}{ \sqrt{29}}$$
    $$k=11$$
    $$k-2=11-2$$
    $$k-2=9$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now