Let $$\displaystyle \overrightarrow { AB } =\overrightarrow { a } ,\overrightarrow { AD } =\overrightarrow { b } ,$$
then $$\displaystyle \overrightarrow { AC } =\overrightarrow { a } +\overrightarrow { b } $$
Given $$\displaystyle \overrightarrow { A{ B }_{ 1 } } ={ \lambda }_{ 2 }\overrightarrow { a } ,\overrightarrow { A{ D }_{ 1 } } ={ \lambda }_{ 2 }\overrightarrow { b } ,\overrightarrow { A{ C }_{ 1 } } ={ \lambda }_{ 3 }\left( \overrightarrow { a } +\overrightarrow { b } \right) $$
$$\displaystyle \overrightarrow { { B }_{ 1 }{ D }_{ 1 } } =\overrightarrow { { AD }_{ 1 } } -\overrightarrow { { AB }_{ 1 } } ={ \lambda }_{ 2 }\overrightarrow { b } -{ \lambda }_{ 2 }\overrightarrow { b } -{ \lambda }_{ 1 }\overrightarrow { a } $$
Since vectors $$\displaystyle \overrightarrow { { D }_{ 1 }{ C }_{ 1 } } $$ and
$$\displaystyle \overrightarrow { { B }_{ 1 }{ D }_{ 1 } } $$ are collinear, we have
$$\displaystyle \overrightarrow { { D }_{ 1 }{ C }_{ 1 } } =k\overrightarrow { { B }_{ 1 }{ D }_{ 1 } } $$ for some $$\displaystyle k\in R$$
$$\displaystyle \Rightarrow \overrightarrow { { AC }_{ 1 } } -\overrightarrow { { AD }_{ 1 } } =k\overrightarrow { { B }_{ 1 }{ D }_{ 1 } } $$
$$\displaystyle \Rightarrow { \lambda }_{ 3 }\left( \overrightarrow { a } +\overrightarrow { b } \right) -{ \lambda }_{ 2 }\overrightarrow { b } =k.\left( { \lambda }_{ 2 }\overrightarrow { b } -{ \lambda }_{ 1 }\overrightarrow { a } \right) $$
$$\displaystyle \Rightarrow { \lambda }_{ 3 }\overrightarrow { a } +\left( { \lambda }_{ 3 }-{ \lambda }_{ 2 } \right) \overrightarrow { b } =k.{ \lambda }_{ 2 }\overrightarrow { b } -k.{ \lambda }_{ 1 }\overrightarrow { a } $$
Hence, $$\displaystyle { \lambda }_{ 3 }=-k{ \lambda }_{ 1 }$$ and $$\displaystyle { \lambda }_{ 3 }-{ \lambda }_{ 2 }=k{ \lambda }_{ 2 }$$
$$\displaystyle \Rightarrow k=-\frac { { \lambda }_{ 3 } }{ { \lambda }_{ 1 } } =\frac { { \lambda }_{ 3 }-{ \lambda }_{ 2 } }{ { \lambda }_{ 2 } }$$
$$\Rightarrow { \lambda }_{ 1 }{ \lambda }_{ 2 }={ \lambda }_{ 1 }{ \lambda }_{ 3 }+{ \lambda }_{ 2 }{ \lambda }_{ 3 }$$
$$\displaystyle \Rightarrow \frac { 1 }{ { \lambda }_{ 3 } } =\frac { 1 }{ { \lambda }_{ 1 } } +\frac { 1 }{ { \lambda }_{ 2 } } $$