Self Studies

Vector Algebra Test - 41

Result Self Studies

Vector Algebra Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the maximum number of components into which a vector can be
    split ?
    Solution
    A vector can be split into infinite components (but only 3 orthogonal ones)
  • Question 2
    1 / -0
    $$P$$ is any point on the circumcircle of $$\triangle ABC$$ other than the vertices. $$H$$ is the orthocenter of $$\triangle ABC,M$$ is the mid-point of $$PH$$ and $$D$$ is the mid-point of $$BC$$. Then
    Solution
    Let $$S$$ be the circumcentre of $$\triangle ABC.$$
    Let $$\displaystyle \overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $$ and $$\overrightarrow { p } $$ be the orthocentre of vectors of $$A,B,C$$ and $$P$$ respectively with referentre to origin $$S.$$
    $$\displaystyle \overrightarrow { SA } =\overrightarrow { a } ,\overrightarrow { SB } =\overrightarrow { b } ,\overrightarrow { SC } =\overrightarrow { c } ,\overrightarrow { SP } =\overrightarrow { p } $$ and $$\displaystyle \left| \overrightarrow { p }  \right| =\left| \overrightarrow { a }  \right| =\left| \overrightarrow { b }  \right| =\left| \overrightarrow { c }  \right| =R=\\ $$ circumradius.
    Now, $$\displaystyle \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } =\overrightarrow { SA } +\overrightarrow { SB } +\overrightarrow { SC } $$
    $$\displaystyle =\overrightarrow { SA } +\overrightarrow { 2SD } =\overrightarrow { SA } +\overrightarrow { AH } =\overrightarrow { SH } $$
    $$(\because H.G:GS=2:1$$ where $$G$$ is centroid $$)$$
    Position vector of $$\displaystyle H=\overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } $$
    So, position vector of $$\displaystyle M=\frac { \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } +\overrightarrow { p }  }{ 2 } $$
    $$\overrightarrow { DM } =p.v$$ of $$M-p.v.$$ of $$\displaystyle D=\frac { \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } +\overrightarrow { p }  }{ 2 } -\frac { \overrightarrow { b } +\overrightarrow { c }  }{ 2 } =\frac { \overrightarrow { a } +\overrightarrow { p }  }{ 2 } $$
    Now $$\displaystyle \overrightarrow { DM } .\overrightarrow { PA } =\left( \frac { \overrightarrow { a } +\overrightarrow { p }  }{ 2 }  \right) .\left( \frac { \overrightarrow { a } -\overrightarrow { p }  }{ 2 }  \right) =\frac { { \left| \overrightarrow { a }  \right|  }^{ 2 }-{ \left| \overrightarrow { p }  \right|  }^{ 2 } }{ 2 } =0\Rightarrow \overrightarrow { DM } \bot \overrightarrow { AP } $$
  • Question 3
    1 / -0
    If $$\vec{a}=(\lambda\,x)\hat{i}+(y)\hat{j}+(4z)\hat{k},\,\vec{b}=y\hat{i}+x\hat{j}+3y\hat{k},\,\vec{c}=-z\hat{i}-2z\hat{j}-\begin{pmatrix}(\lambda+1)x\end{pmatrix}\hat{k}$$ are sides of triangle as shown in figure, then value of $$\lambda$$ is (where $$x,\,y,\,z$$ are not all zero)

    Solution
    $$\vec{a}+\vec{b}=\vec{c}$$
    $$((\lambda\,x)\hat{i}+y\hat{j}+4z\hat{k})+(y\hat{i}+x\hat{j}+3y\hat{k})$$
    $$=-z\hat{i}-2z\hat{j}-(\lambda+1)x\hat{k}$$
    $$\Rightarrow\;\lambda\,x+y+z=0;\;\;x+y+2z=0$$
    $$\&\;(\lambda+1)x+3y+4z=0$$
    For non-trivial solution,
    $$\begin{vmatrix}\lambda&1&1\\1&1&2\\(\lambda+1) & 3 & 4\end{vmatrix}=0$$
    $$\Rightarrow \lambda(4-6)-(4-2(\lambda+1))+(3-(\lambda+1))=0$$
    $$\Rightarrow -2\lambda-4+2\lambda+2+3-\lambda-1=0$$
    $$\Rightarrow -\lambda=0\;\;\;$$
    $$\Rightarrow\;\;\;\lambda=0$$
  • Question 4
    1 / -0
    For any vector a, the value of $$\displaystyle { \left( a\times i \right)  }^{ 2}+{ \left( a\times k \right)  }^{ 2  }$$ is equal to
    Solution
    $$\begin{array}{l} { \left( { a\times i } \right) ^{ 2 } }+{ \left( { a\times k } \right) ^{ 2 } } \\ Let \\ \vec { a } ={ a_{ 1 } }\hat { i } +{ a_{ 2 } }\hat { j } +{ a_{ 3 } }\hat { k }  \\ ={ \left\{ { \left( { { a_{ 1 } }\hat { i } +{ a_{ 2 } }\hat { j } +{ a_{ 3 } }\hat { k }  } \right) \times \hat { i }  } \right\} ^{ 2 } }+{ \left\{ { \left( { { a_{ 1 } }\hat { i } +{ a_{ 2 } }\hat { j } +{ a_{ 3 } }\hat { k }  } \right) \times \hat { k }  } \right\} ^{ 2 } } \\ ={ \left( { { a_{ 3 } }\hat { i } -{ a_{ 2 } }\hat { k }  } \right) ^{ 2 } }+{ \left( { { a_{ 2 } }\hat { i } -{ a_{ 1 } }\hat { j }  } \right) ^{ 2 } } \\ =a_{ 3 }^{ 2 }+a_{ 2 }^{ 2 }+a_{ 2 }^{ 2 }+a_{ 1 }^{ 2 } \\ =\left( { a_{ 1 }^{ 2 }+2a_{ 2 }^{ 2 }+a_{ 3 }^{ 2 } } \right)  \\ Hence, \\ option\, \, C\, \, is\, correct\, \, answer. \end{array}$$
  • Question 5
    1 / -0
    If $$S$$ is the circumcentre, $$O$$ is the orthocenter of $$\triangle ABC, $$ then $$SA+SB+SC=$$
    Solution
    From geometry 
    $$2SD=AO,$$ where $$D$$ is the mid. 
    Point of $$BC.$$
    $$\displaystyle \therefore SA+SB+SC=SA+SD+DB+SD+DC$$
    $$=SA+2SD$$
    $$=SA+AO=SO$$
    $$\displaystyle \therefore SA+SB+SC=SO.$$

  • Question 6
    1 / -0
    Any vector in an arbitrary direction can always be replaced by two (or three)
    Solution
    Any vector in an arbitrary direction can always be replaced by two or three arbitrary vector because they together produce the same effect as is produced by the given vector.
  • Question 7
    1 / -0
    $$12$$ coplanar non collinear forces (all of equal magnitude) maintain a body in equilibrium, then the angle between any two adjacent forces is:
    Solution
    According to polygon law of vector addition, the 11 forces will be the sides of polygon in same order in direction and 1 forces will represent the resultant which is a side in opposite order of the polygon. Total angle enclosed by polygon is $$360^o$$. So, the required angle $$=\dfrac{360^o}{12}=30^o$$
  • Question 8
    1 / -0
    There are three points with position vectors $$-2a+3b+5c, a+2b+3c$$ and $$7a-c$$. What is the relation between the three points
    Solution
     Let 
    $$A,B,C$$ are three vectors whose position vectors are $$7\vec a - \vec c,\vec a + 2\vec b + 3\vec c, - 2\vec a + 3\vec b + 5\vec c$$ respectively.
    Then
    the vectors $$\vec {AB},\vec {BC}, \vec {CA}$$  are given by 

    $$\vec {AB}=\vec {OB}-\vec {OA}$$

    $$=(\vec a++2\vec b+3\vec c)-(7\vec a-\vec c)$$

    $$=-6\vec a+2\vec b+4\vec c$$

    $$\vec {BC}=\vec (OC)-\vec {OB}$$

    $$=(-2\vec a+3\vec b+5\vec c)-(\vec a+2\vec b+3\vec c)$$

    $$=-3\vec a+\vec b+2\vec c$$

    $$\vec {CA}=\vec {OC}-\vec {OA}$$

    $$=(-2\vec a+3\vec b+5\vec c)-(7\vec a-\vec c)$$

    $$=-9\vec a+3\vec b+6\vec c$$
    And 
    $$\vec {AB}+\vec {BC}=(-6\vec a+2\vec b+4\vec c)+(-3\vec a+\vec b+2\vec c)$$

    $$=-9\vec a+3\vec b+6\vec c$$

    $$=\vec {CA}$$This implies that the points $$A,B,C$$ are collinear .

  • Question 9
    1 / -0
    If $$\vec { a } \cdot \hat { i } =4$$, then $$\left( \vec { a } \times \hat { j }  \right) \cdot \left( 2\hat { j } -3\hat { k }  \right) $$ is equal to
    Solution
    $$\left( \vec { a } \times \hat { j }  \right) \cdot \left( 2\hat { j } -3\hat { k }  \right) =\vec { a } \cdot \left\{ \hat { j } \times \left( 2\hat { j } -3\hat { k }  \right)  \right\} $$
                            $$=\vec { a } \cdot \left\{ -3\left( \hat { j } \times \hat { k }  \right)  \right\} $$
                            $$=-3\left( \vec { a } \cdot \hat { i }  \right) $$
                            $$=-12$$                    ($$\because \vec { a } \cdot \hat { i } =4$$ given)
  • Question 10
    1 / -0
    If the position vectors of the vertices of a triangle be 6i + 4j + 5k, 4i + 5j + 6k and 5i + 6j + 4k then the triangle is
    Solution

    We have,

    Let the vertices of triangle is

    $$ \overrightarrow{OA}=\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right) $$

    $$ \overrightarrow{OB}=\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right) $$

    $$ \overrightarrow{OC}=\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right) $$

    Now,

    $$ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} $$

    $$ \overrightarrow{AB}=\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right)-\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right) $$

    $$ \overrightarrow{AB}=4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k}-6\overrightarrow{i}-4\overrightarrow{j}-5\overrightarrow{k} $$

    $$ \overrightarrow{AB}=-2\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k} $$

    $$ \overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB} $$

    $$ \overrightarrow{BC}=\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right)-\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right) $$

    $$ \overrightarrow{BC}=5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k}-4\overrightarrow{i}-5\overrightarrow{j}-6\overrightarrow{k} $$

    $$ \overrightarrow{BC}=\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k} $$

    $$ \overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC} $$

    $$ \overrightarrow{CA}=\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right)-\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right) $$

    $$ \overrightarrow{CA}=6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k}-5\overrightarrow{i}-6\overrightarrow{j}-4\overrightarrow{k} $$

    $$ \overrightarrow{CA}=\overrightarrow{i}-2\overrightarrow{j}+\overrightarrow{k} $$

    Now,

    $$ \left| AB \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{6} $$

    $$ \left| BC \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{\left( -2 \right)}^{2}}}=\sqrt{6} $$

    $$ \left| CA \right|=\sqrt{{{1}^{2}}+{{\left( -2 \right)}^{2}}+{{1}^{2}}}=\sqrt{6} $$

    Then,

    $$AB=BC=CA=\sqrt{6}$$

    Hence, It triangle is equilateral triangle.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now