Self Studies

Vector Algebra Test - 42

Result Self Studies

Vector Algebra Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If a and b are two non-zero and non-collinear vectors, then a + b and a - b are
    Solution

  • Question 2
    1 / -0
    Let P, Q, R and S be the points on the plane with position vectors (-2i - j), 4i, (3i + 3j) and (-3i + 2j) respectively. The quadilateral PQRS must be a
    Solution
    Consider the problem 
    As we given 
    $$\left( { - 2\hat i - \hat j} \right),\left( {4\hat i} \right),\left( {3\hat i + 3\hat j} \right),\left( { - 3i + 2\hat j} \right)$$
    On converting above vectors into Cartesian coordinates
    Then , consider,
    $$P\left( { - 2, - 1} \right),Q\left( {4,0} \right),R\left( {3,3} \right),S\left( { - 3,2} \right)$$
    By distance formula 

    $$=\sqrt{(x_1-x_2)^2+(y_1+y_2)^2}$$

    $$d(PQ)=\sqrt{(4+2)^2+(0+1)^2}=\sqrt{37}$$
    Similarly,

    $$d(QR)=\sqrt{10}$$

    $$d(RS)={\sqrt{37}}$$

    $$d(SP)=\sqrt{10}$$

    Therefore,
    $$d(PQ)=d(RS)$$ and $$d(QR)=d(SP)$$
    Hence, 
    $$PQRS$$ is parallelogram 
    Now, 
    Slope $$=\dfrac{y_2-y_1}{x_2-x_1}$$
    Therefore, let slope is $$S$$ 
    then ,
    $$S(PQ)=\dfrac{0-(-1)}{4-(-2)}=\dfrac{0+1}{4+2}=\dfrac{1}{6}$$
    Similarly,
    $$S(QR)=\dfrac{3}{-1}=-3$$

    $$S(RS)=\dfrac{-1}{-6}=\dfrac{1}{6}$$

    $$S(PS)=-3$$

    $$S(PQ)=S(RS)$$ this implies $$PQ \parallel RS$$
    And 
    $$S(QR)=S(SP)$$ this implies $$QR \parallel SP$$

    $$S(PQ) \ne S(QR)$$   i.e. they aren't parallel 

    $$S(PQ) \times S(QR) \ne -1$$ i.e. they aren't perpendicular.

    Therefore 

    $$PQRS$$ is a parallelogram but it is nor a rhombus and not rectangle.

    Hence option $$A$$ is the correct answer.
  • Question 3
    1 / -0
    In triangle $$ABC$$, which of the following is not true?

    Solution


    $${\textbf{Step 1: Using triangle law of vector addition, find the resultant of two vectors}}$$

                  $$ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} $$

    $${\textbf{Step 2: Solve the vector sum and Compare with the given options}}$$

                  $$ \Rightarrow \overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {AC}  = \overrightarrow 0 $$

                  $${\text{Or }}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow 0 $$

                  $${\text{Or }}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow 0 $$

                  $${\text{So, }}$$$$\overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {CA}  \ne \overrightarrow 0 $$

    $${\textbf{Hence, Option (C) is incorrect}}$$

  • Question 4
    1 / -0
    $$\vec{a}\, \neq\, \bar{0},\,\vec{b}\,\neq\,\bar{0},\,\vec{c}\,\neq\,0,\,\vec{a}\,\times\,\vec{b}\,=\,\vec{0},\, \bar{b}\,\times\,\vec{c}\,=\,0\,\Rightarrow\,\vec{a}\,\times\,\vec{c}\,=$$
    Solution
    We know,
    $$\overrightarrow{a}\times \overrightarrow{b}=0$$    $$\Rightarrow \overrightarrow{a}=\lambda\overrightarrow{b}$$
    And since $$\overrightarrow{b}\times \overrightarrow{c}=0$$    $$\overrightarrow{c}=\lambda '\overrightarrow{b} $$
    So, $$\overrightarrow{a}\times \overrightarrow{c}=\lambda\times\lambda '\times \overrightarrow{b}\times \overrightarrow{b}=0$$
    So, Option (C)
  • Question 5
    1 / -0
    The position vectors of $$P$$ and $$Q$$ are respectively $$a$$ and $$b$$. If $$R$$ is a point on $$PQ$$, $$PQ$$ such that $$PR=5PQ$$, then the position vector of $$R$$ is
    Solution
    Given condition 
    $$PR=5PQ$$
    $$R-P=5(Q-P)$$
    $$R=5Q-5P+P$$
    $$R=5Q-4P$$
    $$R=5b-4a$$
  • Question 6
    1 / -0
    If $$|\vec {a}| = |\vec {b}| = 1$$ and $$|\vec {a} + \vec {b}| = \sqrt {3}$$, then the value of $$(3\vec {a} - 4\vec {b}) \cdot (2\vec {a} + 5\vec {b})$$ is
    Solution
    $$\because |\vec {a} + \vec {b}| = \sqrt {3}$$
    $$\Rightarrow |\vec {a}|^{2} + |\vec {b}|^{2} + 2\vec {a} \cdot \vec {b} = 3$$
    $$\Rightarrow \vec {a}\cdot \vec {b} = \dfrac {1}{2}$$ ..... (i)
    $$(\because |\vec {a}| = |\vec {b}| = 1 given)$$
    $$\therefore (3\vec {a} - 4\vec {b})\cdot (2\vec {a} + 5\vec {b})$$
    $$= 6|\vec {a}|^{2} + 15\vec {a}\cdot \vec {b} - 8\vec {a}\cdot \vec {b} - 20 |\vec {b}|^{2}$$
    $$= 6 + 7\vec {a}\cdot \vec {b} - 20$$
    $$= 6 + \dfrac {7}{2} - 20$$ [from Eq. (i)]
    $$= \dfrac {7 - 28}{2} = -\dfrac {21}{2}$$
  • Question 7
    1 / -0
    Let $$\vec {a} = \vec {i} + 2\vec {j} + \vec {k}, \vec {b} = \vec {i} - \vec {j} + \vec {k}$$ and $$\vec {c} = \vec {i} + \vec {j} - \vec {k}$$. A vector in the plane of $$\vec {a}$$ and $$\vec {b}$$ has projection $$\dfrac {1}{\sqrt {3}}  \ on\  \vec {c}$$. Then, one such vector is
    Solution
    Let $$\vec { v } $$ be the vector then $$\vec { v } =\vec { a } +\lambda \vec { b } $$
    $$\therefore \vec { v } =\left( 1+\lambda  \right) \hat { i } +\left( 2-\lambda  \right) \hat { j } +\left( 1+\lambda  \right) \hat { k } $$

    Now $$\left| \dfrac { \vec { v } \cdot \vec {c }  }{ \left| \vec { c }  \right|  }  \right| =\dfrac { 1 }{ \sqrt { 3 }  } $$
    $$\Rightarrow \dfrac { \left| 1+\lambda +2-\lambda -1-\lambda  \right|  }{ \sqrt { 3 }  } =\dfrac { 1 }{ \sqrt { 3 }  } $$
    $$\Rightarrow 2-\lambda =\pm 1$$

    $$\Rightarrow \lambda =3$$ or $$1$$

    $$\therefore \vec { v } =4\hat { i } -\hat { j } +4\hat { k } $$ or $$2\hat { i } +\hat { j } +2\hat { k } $$
  • Question 8
    1 / -0
    Let $$\overrightarrow {a} , \overrightarrow {b}$$ and $$\overrightarrow {c}$$ be vectors with magnitudes 3, 4 and 5 respectively and $$\overrightarrow{a} + \overrightarrow {b}+\overrightarrow {c}=\overrightarrow {0}$$, then the value of $$\overrightarrow{a}. \overrightarrow{b}+\overrightarrow{b}. \overrightarrow{c} + \overrightarrow{c}. \overrightarrow{a}$$ is
    Solution
    $$ \vec{a}+\vec{b}+\vec{c} = \vec{0}. $$
    dot product with $$ \vec{a},\vec{b} $$ and $$ \vec{c} $$ both sides 
    $$ \vec{a}.(\vec{a}+\vec{b}+\vec{c}) = \vec{0}\Rightarrow (\vec{a})^{2}+\vec{a}.\vec{b}+\vec{a}.\vec{c} = \vec{0}. $$
    Similarly, $$ \vec{b},\vec{a}+(\vec{b})^{2}+(\vec{b}.\vec{c}) = \vec{0}; \vec{c}.\vec{a}+\vec{b}.\vec{c}+(\vec{c})^{2} = \vec{0} $$
    adding all 3 equation,
    $$ (\vec{a})^{2}+(\vec{b})^{2}+(\vec{c})^{2}+2(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}) = \vec{0} $$
    $$ 2(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}) = -[3^{2}+4^{2}+5^{2}] = -50 $$
    $$ \boxed { \vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a} = -25} $$ 

  • Question 9
    1 / -0
    Find the correct vectorial relationship with the help of the figure above.

    Solution
    If we observe clearly, we can see that $$y$$ is resultant of $$x$$ and $$z$$.
    So, we get $$y = x+z$$.
  • Question 10
    1 / -0
    How much does a watch lose per day, if its hands coincide every $$64$$ minutes?
    Solution
    $$55min.$$ spaces are covered in $$60min.$$

    $$60min.$$ spaces are covered in $$\left( \cfrac { 60 }{ 55 } \times 60 \right) min=65\cfrac { 5 }{ 11 } min.$$

    Loss in $$64min.=\left( 65\cfrac { 5 }{ 11 } -64 \right) =\cfrac { 16 }{ 11 } min.$$

    Loss in $$24hrs.=\left( \cfrac { 16 }{ 11 } \times \cfrac { 1 }{ 64 } \times 24\times 60 \right) min.=32\cfrac { 8 }{ 11 } min$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now