Consider the problem
As we given
$$\left( { - 2\hat i - \hat j} \right),\left( {4\hat i} \right),\left( {3\hat i + 3\hat j} \right),\left( { - 3i + 2\hat j} \right)$$
On converting above vectors into Cartesian coordinates
Then , consider,
$$P\left( { - 2, - 1} \right),Q\left( {4,0} \right),R\left( {3,3} \right),S\left( { - 3,2} \right)$$
By distance formula
$$=\sqrt{(x_1-x_2)^2+(y_1+y_2)^2}$$
$$d(PQ)=\sqrt{(4+2)^2+(0+1)^2}=\sqrt{37}$$
Similarly,
$$d(QR)=\sqrt{10}$$
$$d(RS)={\sqrt{37}}$$
$$d(SP)=\sqrt{10}$$
Therefore,
$$d(PQ)=d(RS)$$ and $$d(QR)=d(SP)$$
Hence,
$$PQRS$$ is parallelogram
Now,
Slope $$=\dfrac{y_2-y_1}{x_2-x_1}$$
Therefore, let slope is $$S$$
then ,
$$S(PQ)=\dfrac{0-(-1)}{4-(-2)}=\dfrac{0+1}{4+2}=\dfrac{1}{6}$$
Similarly,
$$S(QR)=\dfrac{3}{-1}=-3$$
$$S(RS)=\dfrac{-1}{-6}=\dfrac{1}{6}$$
$$S(PS)=-3$$
$$S(PQ)=S(RS)$$ this implies $$PQ \parallel RS$$
And
$$S(QR)=S(SP)$$ this implies $$QR \parallel SP$$
$$S(PQ) \ne S(QR)$$ i.e. they aren't parallel
$$S(PQ) \times S(QR) \ne -1$$ i.e. they aren't perpendicular.
Therefore
$$PQRS$$ is a parallelogram but it is nor a rhombus and not rectangle.
Hence option $$A$$ is the correct answer.