If $$\overrightarrow { a } $$ and $$\overrightarrow { b }$$ are the vectors determined by the adjacent sides of a regular hexagon.
Let $$ABCDEF$$ be a regular hexagon such that
$$\overrightarrow { AB } =\overrightarrow { a } ,\quad \overrightarrow { BC } =\overrightarrow { b } $$
Now $$\overrightarrow { AC } =\overrightarrow { AB } +\overrightarrow { BC } =\overrightarrow { a } +\overrightarrow { b } \\ \overrightarrow { AD } =2\overrightarrow { BC } \quad [\because \quad AD=2BC\quad and\quad AD\parallel BC]\\ \therefore \overrightarrow { AD } =2\overrightarrow { b } $$
In $$\\ \Delta ADC,\overrightarrow { AC } +\overrightarrow { CD } =\overrightarrow { AD } \\ \overrightarrow { CD } =\overrightarrow { AD } -\overrightarrow { AC } =2\overrightarrow { b } -\left( \overrightarrow { a } +\overrightarrow { b } \right) \\ \quad \quad \quad =\overrightarrow { b } -\overrightarrow { a } \\ \overrightarrow { DE } =-\overrightarrow { AB } =-\overrightarrow { a } \\ \quad \quad $$
Hence correct option is $$A$$
$$\overrightarrow { b } -\overrightarrow { a } $$ ,$$-\overrightarrow { a } \\ \quad \quad $$