Self Studies

Vector Algebra Test - 43

Result Self Studies

Vector Algebra Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$2\overrightarrow { a }\cdot \overrightarrow { b } =\left| \overrightarrow { a }  \right| \left| \overrightarrow { b }  \right| $$ then the angle between $$\vec { a }$$ and $$ \vec { b }$$ is 
    Solution
    $$2\overrightarrow { a }\cdot \overrightarrow { b } = \left| \overrightarrow { a }  \right| \left| \overrightarrow { b }  \right| $$
    But we know that $$\vec{a}\cdot \vec{b}=|\vec{a}||\vec{b}|\cos\theta$$
    $$\therefore \cos\theta=\dfrac{1}{2}$$
    $$\Rightarrow \theta=60^o$$

    Here $$\theta$$ is the angle between both the vectors 
  • Question 2
    1 / -0
    For non-zero vectors $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ if $$|\overrightarrow{a}+\overrightarrow{b}| < |\overrightarrow{a}-\overrightarrow{b}|$$, then $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ are
    Solution
    $$|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$$
    $$a^{2}+b^{2}+2ab\cos\theta<a^{2}+b^{2}-2ab\cos\theta$$       where $$\theta$$ is the included angle between the two vectors.
    Hence
    $$4ab\cos\theta<0$$
    Since $$a,b>0$$ (magnitude of a vector is always a positive quantity).
    Hence
    $$\cos\theta<0$$
    Or
    $$\theta\in \left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$$. Hence $$\theta$$ is an obtuse angle.
  • Question 3
    1 / -0
    Let $$\vec {a} = i + 2j + k, \vec {b} = i - j + k$$ and $$\vec {c} = i + j - k$$, a vector in the plane $$\vec {a}$$ and $$\vec {b}$$ whose projection on $$\vec {c}$$ is $$\dfrac {1}{\sqrt {3}}$$ is _____
    Solution
    A vector in the plane of $$\vec{a}$$ and $$\vec{b}$$ would be $$m\vec{a} + n\vec{b}$$
    i.e. $$(m + n)i + (2m - n)j + (m + n)k$$
    Its projection on $$\vec{c}$$ will be $$\cfrac{(m\vec{a} + n\vec{b}).\vec{c}}{|c|}$$
    $$\therefore \cfrac{1}{\sqrt{3}} = \cfrac{[(m + n)i + (2m - n)j + (m + n)k].(i + j - k)}{\sqrt{3}}$$
    $$\Rightarrow 1 = m + n + 2m - n - m - n$$
    $$\Rightarrow 1 = 2m - n$$ 
    This relation is satisfied by $$m = 1, n = 1$$
    Thus, the required vector can be $$2i + j + 2k$$
  • Question 4
    1 / -0
    Point $$P$$ is the endpoint of vector $$OP$$ and point $$Q$$ is the endpoint of vector $$OQ$$ as shown in the above figure. When the vectors $$\overline {OP}$$ and $$\overline {OQ}$$ are added, calculate the length of the resultant vector.

    Solution
    Given in figure, $$P (-3,7)$$ and $$Q(4,-7)$$ and point $$O (0,0)$$
    Then vector $$PO=$$ $$\overline{PO}=(0,0)-(3,-7)=(3,-7)$$
    And vector $$OQ =$$ $$\overline{OQ}=(0,0)-(4,-5)=(-4,5)$$
    Then length of vector $$PQ =$$ $$\overline{PQ}=\sqrt{(-4+3)^{2}+(5-7)^{2}}=\sqrt{1+4}\sqrt{5}=2.24$$
  • Question 5
    1 / -0
    The value of $$x$$ if $$x(\hat { i } +\hat { j } +\hat { k } )$$ is a unit vector is
    Solution
    If $$x(\hat i+\hat j+\hat k)$$ is an unit vector then 
    $$|x(\hat i+\hat j+\hat k)|=1$$
    $$\Rightarrow \bigg|x\sqrt{1^2+1^2+1^2} \bigg|=1$$
    $$\Rightarrow \sqrt 3|x|=1$$
    $$\Rightarrow |x|=\dfrac{1}{\sqrt 3}$$
    $$\therefore x=\pm \dfrac{1}{\sqrt 3}$$
  • Question 6
    1 / -0
    If $$\displaystyle \vec{a}\:and\:\vec{b}$$ are the vectors $$\displaystyle \overrightarrow{AB}\:and\:\overrightarrow{BC}$$ determined by the adjacent sides of a regular hexagon. What are the vectors determined by the side CD and DE taken in order?
    Solution
    If $$\overrightarrow { a } $$ and $$\overrightarrow { b }$$ are the vectors determined by the adjacent sides of a regular hexagon.
    Let $$ABCDEF$$ be a regular hexagon such that 
    $$\overrightarrow { AB } =\overrightarrow { a } ,\quad \overrightarrow { BC } =\overrightarrow { b } $$
    Now $$\overrightarrow { AC } =\overrightarrow { AB } +\overrightarrow { BC } =\overrightarrow { a } +\overrightarrow { b } \\ \overrightarrow { AD } =2\overrightarrow { BC } \quad [\because \quad AD=2BC\quad and\quad AD\parallel BC]\\ \therefore \overrightarrow { AD } =2\overrightarrow { b } $$
    In $$\\ \Delta ADC,\overrightarrow { AC } +\overrightarrow { CD } =\overrightarrow { AD } \\ \overrightarrow { CD } =\overrightarrow { AD } -\overrightarrow { AC } =2\overrightarrow { b } -\left( \overrightarrow { a } +\overrightarrow { b }  \right) \\ \quad \quad \quad =\overrightarrow { b } -\overrightarrow { a } \\ \overrightarrow { DE } =-\overrightarrow { AB } =-\overrightarrow { a } \\ \quad \quad $$
    Hence correct option is $$A$$ 
    $$\overrightarrow { b } -\overrightarrow { a } $$ ,$$-\overrightarrow { a } \\ \quad \quad $$

  • Question 7
    1 / -0
    If $$p$$ , $$q$$ and $$r$$ are three non-coplanar vectors such that $$p + q + r  = \alpha s$$ and $$q + r + s = \beta p $$. then $$ p +q +r +s $$  is equal to
    Solution
    Given 
    $$p+q+r=\alpha s$$----(1)
    $$q+r+s=\beta p$$----(2)

    $$p+q+r+s$$ $$=\alpha s+s$$( from 1)
    $$=(\alpha+1)s$$

  • Question 8
    1 / -0
    $$ABCDEF$$ is a regular hexagon whose centre is $$O$$. The $$\overline { AB } +\overline { AC } +\overline { AD } +\overline { AE } +\overline { AF } $$ is
    Solution
    Since it is a regular hexagon,
    $$\overline { AB } =\overline { ED } ,\overline { AF } =\overline { CD } $$

    Now, $$\overline { AB } +\overline { AC } +\overline { AD } +\overline { AE } +\overline { AF } =\overline { AE } +\overline { ED } +\overline { AC } +\overline { CD } +\overline { AD } =3\overline { AD } $$

    Now, since $$O$$ is the centre of the hexagon, $$O$$ will be the midpoint of $$AD$$
    $$\therefore 3\overline{AD}=6\overline { AO } $$

  • Question 9
    1 / -0
    Two $$\vec a$$ and $$\vec b$$ are at an angle of $$60^o$$ with each other Their resultant makes an angle of $$45^o$$ with $$\vec a$$ If magnitude $$|\vec b|= 2$$ units then $$|\vec a|$$ is:
    Solution
    The vectors make $$60°$$ with each other, and the resultant vector makes $$45°$$ with $$a$$
    The other angle $$=15°$$
    Using the side rule;
    $$a/\sin { 15 } =2/\sin { 45 } \\ a=2\sin { 15 } /\sin { 45 } \\ a=0.732$$
    Hence correct answer is $$(B)$$ $$\sqrt { 3 } -1$$

  • Question 10
    1 / -0
    The magnitude of resultant of three vectors of magnitude $$1,2$$ and $$3$$ whose direction are those of the sides of an equilateral triangle taken in order is:
    Solution
    The $$1$$ magnitude vector in each cancels out to give only $$1$$ and $$2$$ magnitude vectors which are $$120$$ degrees apart, which gives a resultant of $$\sqrt{3}$$ units
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now