Self Studies

Vector Algebra Test - 45

Result Self Studies

Vector Algebra Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector $$b = 3j + 4k$$ is to be written as the sum of a vector $$b_{1}$$ parallel to $$a = i + j$$ and a vector $$b_{2}$$ perpendicular to $$a$$. Then $$b_{1}$$ is equal to
    Solution
    $$b_{1} \parallel a\Rightarrow b_{1} = a(i + j)$$
    $$b_{2} = b - b_{1} = (3 - a) i - aj + 4k$$
    Also, $$b_{3} - a = 0$$
    $$\Rightarrow (3 - a) - a=0\Rightarrow a = \dfrac {3}{2}$$
    $$\therefore b_{1} = \dfrac {3}{2}(i + j)$$
  • Question 2
    1 / -0
    The magnitude of the scalar $$p$$ for which the vector $$p\left( -3\hat { i } -2\hat { j } +13\hat { k }  \right) $$ is of unit length is:
    Solution
    For given vector to be unit vector its magnitude must be equal to one.
    Now modulus of given vector $$=p\sqrt { { (-3) }^{ 2 }+{ (-2) }^{ 2 }+{ 13 }^{ 2 } } =p\sqrt { 182 } =1\\ \Rightarrow p=\dfrac { 1 }{ \sqrt { 182 }  } $$
    Option D is correct.
  • Question 3
    1 / -0
    If $$\vec a, \vec b$$ and $$\vec c$$ are three non-coplanar vectors, then $$(\vec a +\vec  b -\vec  c) \cdot [(\vec a - \vec b) \times (\vec b - \vec c)$$ equals
    Solution
    $$[a + b - c] \cdot [(a - b)\times (b - c)$$

    $$= (a + b - c)\cdot [a\times b - a\times c - b\times b + b\times c]$$

    Since, $$(b \times b=0)$$

    $$\therefore [a + b - c] \cdot [(a - b)\times (b - c)]$$
    $$= a.(a\times b) - a.(a\times c) + a.(b\times c) + b.(a\times b) - b(a\times c) + b.(b\times c) - c.(a\times b) + c.(a\times c) - c.(b\times c)$$  

    $$= a.(b\times c) - b.(a\times c) - c.(a\times b)$$  ........ (since, a,b and c are non-
    coplanar)
    $$=[a\ b\ c] - [b\ a\ c] - [c\ a\ b]$$
    $$=[a\ b\ c] + [a\ b\ c] - [a\ b\ c]$$

    $$=[a\ b\ c] = a.(b\times c)$$

    Hence, option B is correct.
  • Question 4
    1 / -0
    Let $$\vec{v_1}, \vec{v_2}, \vec{v_3} , \vec{v_4} $$ be unit vectors in the xy - plane, one each in the interior of the four quadrants. Which of the following statements is necesserily true?
    Solution

    A zero vector can never be a unit vector 

    $$\therefore $$ option $$A$$ is not correct

    Let as assume four unit vectors in the $$xy$$ plane as shown in the figure

    $$\underset { { V }_{ 1 } }{ \rightarrow  } =\dfrac { i }{ \sqrt { 2 }  } +\dfrac { j }{ \sqrt { 2 }  } \\ \underset { { V }_{ 2 } }{ \rightarrow  } =-\dfrac { i }{ \sqrt { 2 }  } +\dfrac { j }{ \sqrt { 2 }  } \\ \underset { { V }_{ 3 } }{ \rightarrow  } =-\dfrac { i }{ \sqrt { 2 }  } -\dfrac { j }{ \sqrt { 2 }  } \\ \underset { { V }_{ 4 } }{ \rightarrow  } =\dfrac { i }{ \sqrt { 2 }  } -\dfrac { j }{ \sqrt { 2 }  } $$

    If we add up any of the two vectors it will either lies on the $$x$$ aisx or the $$y$$ axis, none of them lies in the first quardrant 

    $$\therefore $$  option $$B$$ is not correct 

    Sum of any two vectors less than or greater than zero does not make any sense 

    $$\therefore $$ options $$C$$ and $$D$$ are incorrect

    So none of the options are correct.

     

  • Question 5
    1 / -0
    If the position vector $$\overrightarrow{a}$$ of the point $$(5, n)$$ is such that $$|\overrightarrow{a}|=13$$, then the value/values of n be
    Solution
    Solution:
    Given that: $$|\overrightarrow a|=13$$
    We have,
    $$\overrightarrow a=5\hat i+n\hat j$$
    or, $$|\overrightarrow a|=\sqrt{5^2+n^2}$$
    or, $$13=\sqrt{25+n^2}$$
    or, $$n^2=169-25=144$$
    or, $$n=\pm12$$
    Hence, B is the correct option.
  • Question 6
    1 / -0
    If $$\vec { a } ,\vec { b } ,\vec { c } $$ are mutually perpendicular unit vectors, then $$\left| \vec { a } +\vec { b } +\vec { c }  \right| $$ is equal to
    Solution
    Solution:

    Given that: $$\vec a,\vec b,\vec c$$ are mutually perpendicular .i.e 
    $$\vec a.\vec b=0,\vec b.\vec c=0$$ and $$\vec c.\vec a=0$$
    Also, $$|\vec a|=|\vec b|=|\vec c|=1$$

    Solution:
    $$|\vec a+\vec b+\vec c|=\sqrt{|\vec a|^2+|\vec b|^2+|\vec c|^2+2\vec a.\vec b+2\vec b.\vec c+2\vec c.\vec a}$$
    $$=\sqrt{1+1+1+0+0+0}$$

    $$=\sqrt{3}$$

    Hence, B is the correct option.
  • Question 7
    1 / -0
    Let $$u, v$$ and $$w$$ be such that $$\left| u \right| =1, \left| v \right| =3$$ and $$\left| w \right| =2$$. If the projection of $$v$$ along $$u$$ is equal to that of $$w$$ along $$u$$ and vectors $$v$$ and $$w$$ are perpendicular to each other, then $$\left| u-v+w \right| $$ equals
    Solution
    Given, $$v\cdot u=w\cdot u$$ and $$v \perp w$$  $$\Rightarrow v\cdot w=0$$
    Now, consider
    $${ \left| u-v+w \right|  }^{ 2 }={ \left| u \right|  }^{ 2 }+{ \left| v \right|  }^{ 2 }+{ \left| w \right|  }^{ 2 }-2u\cdot v-2w\cdot v+2u\cdot w$$
                      $$=1+9+4=14$$
    $$\Rightarrow \left| u-v+w \right| =\sqrt { 14 } $$ 
  • Question 8
    1 / -0
    A vector $$R$$ is given by $$R=A\times \left( B\times C \right) $$, which of the following is true?
    Solution
    Given that:
    $$R=A\times(B\times C)$$
    Geometrical representation of the above is
    $$R$$ must be perpendicular to $$A$$ and also $$R$$ must be perpendicular to $$(B\times C).$$
    Therefore, D is the correct option.
  • Question 9
    1 / -0
    If $$a=\hat{i}+\hat{j}, b=2\hat{j}-\hat{k}$$ and $$r\times a=b\times a, r\times b=a\times b$$, then a unit vector in the direction of $${r}$$ is?
    Solution
    We have, $$r\times a =b\times a$$ and $$r\times b=a\times b$$

    $$\Rightarrow r\times a =-(r\times b)$$
    $$\Rightarrow r\times (a+b)=0$$

    $$\Rightarrow $$ r is parallel to $$a+b$$
    $$\Rightarrow r=\lambda(a+b)$$

    $$\Rightarrow r=\lambda(\hat{i}+3\hat{j}-\hat{k})$$

    $$\Rightarrow |r|=\sqrt{11}\lambda$$

    $$\therefore$$ Required vector $$=\displaystyle\frac{r}{|r|}=\frac{1}{\sqrt{11}}(\hat{i}+3\hat{j}-\hat{k})$$.
  • Question 10
    1 / -0
    The resultant of $$P$$ and $$Q$$ is $$R$$. If $$Q$$ is doubled, $$R$$ is also doubled and if $$Q$$ is reversed, $$R$$ is again doubled. Then, $$P^{2} : Q^{2} : R^{2}$$ given by
    Solution
    $$R^{2} = P^{2} + Q^{2} = 2PQ\cos \theta$$
    $$4R^{2} = P^{2} + 4Q^{2} + 4PQ \cos \theta$$
    $$4R^{2} = P^{2} + 4Q^{2} - 2PQ \cos \theta$$
    On solving,
    $$\dfrac {P^{2}}{-6} = \dfrac {Q^{2}}{-9} = \dfrac {R^{2}}{-6}$$
    $$\Rightarrow P^{2} : Q^{2} : R^{2}$$ as $$2 : 3 : 2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now