Self Studies

Vector Algebra Test - 46

Result Self Studies

Vector Algebra Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the scalar projection of the vector $$xi-j+k$$ on the vector $$2i-j+5k$$ is $$\dfrac { 1 }{ \sqrt { 30 }  } $$ then value of $$x$$ is equal to
    Solution

    Scalar projection of $$\vec { a } $$ on $$\vec { b } $$ $$=\dfrac { \left| \vec { a } .\vec { b }  \right|  }{ \left| \vec { b }  \right|  } $$

    let $$ \vec { a }  \ =xi-j+k$$ and $$\vec { b } =2i-j+5k$$

    Then projection of $$\vec { a } $$ on $$\vec { b } $$ $$=\dfrac { (xi-j+k).(2i-j+5k) }{ \left| 2i-j+5k \right|  } $$

    Given scalar projection $$=\dfrac { 1 }{ \sqrt { 30 }  } $$

    $$\Rightarrow \dfrac { 1 }{ \sqrt { 30 }  } =\dfrac { 2x+1+5 }{ \sqrt { { 2 }^{ 2 }+{ (-1) }^{ 2 }+{ 5 }^{ 2 } }  } \\ \Rightarrow \dfrac { 1 }{ \sqrt { 30 }  } =\dfrac { 2x+1+5 }{ \sqrt { 30 }  } \\ \Rightarrow 2x+1+5=1\\ \Rightarrow x=-\dfrac { 5 }{ 2 }  $$

     

  • Question 2
    1 / -0
    Let $$\square PQRS$$ be a quadrilateral. If $$M$$ and $$N$$ are midpoints of the sides $$PQ$$ and $$RS$$ respectively then $$\overline {PS} + \overline {QR} =$$
    Solution
    Let $$\overline{m}, \overline{n}, \overline{p}, \overline{q}, \overline{r}$$ and  $$\overline{s}$$ be position vectors of $$M,N,P,Q,R$$ and $$S$$ respectively.

    $$M$$ and $$N$$ are midpoints of $$PQ$$ and $$RS$$
    $$\therefore \overline {m} = \dfrac {\overline {p} + \overline {q}}{2}$$ and 
    $$\overline {n} = \dfrac {\overline {r} + \overline {s}}{2}$$

    $$\overline {PS} + \overline {QR} = \overline {s} - \overline {p} + \overline {r} - \overline {q}$$
    $$= (\overline {r} + \overline {s}) - (\overline {p} + \overline {q})$$
    $$= 2\overline {n} - 2\overline {m}$$

    $$= 2(\overline {n} - \overline {m})$$

    $$= 2\overline {MN}$$
  • Question 3
    1 / -0
    If $$\vec{a}$$ and $$\vec{b}$$ are the vectors determined by two adjacent sides of regular hexagon, then vector $$EF$$ is
    Solution
    FABCDE is a regular hexgon.

    Let $$\overline{FA}=\vec{a}$$ and $$\overline{AB}=\vec{b}$$, join $$FB$$ and $$FC$$, we have
    $$\overline{FB}=\overline{FA}+\overline{AB}=\vec{a}+\vec{b}$$

    Since, $$\overline{FC}$$ is parallel to $$\overline{AB}$$ and double of 

    $$\overline{AB}$$
    $$\therefore \overline{FC}=2\overline{AB}=2\vec{b}$$

    Now, $$\overline{BC}=FC-FB$$$$=2\vec{b}-(\vec{a}+\vec{b})=\vec{b}-\vec{a}$$

    $$\overline{CD}=-\overline{FA}=-\vec{a}$$ and $$\overline{DE}=-\overline{AB}=-\vec{b}$$

    Also, $$\overline{EF}=-\overline{BC}=-(\vec{b}-\vec{a})=\vec{a}-\vec{b}$$

  • Question 4
    1 / -0
    If $$p=\hat {i} + \hat{j}, q=4\hat{k}-\hat{j}$$ and $$r=\hat{i}+\hat{k}$$, then the unit vector in the direction of $$3p+q-2r$$ is
    Solution
    $$3p+q-2r=3(\hat{i}+\hat{j})+(4\hat{k}-\hat{j})-2(\hat{i}+\hat{k})$$

    $$=\hat{i}+2\hat{j}+2\hat{k}$$

    $$\therefore$$ Unit vector in the direction of $$3p+q-2r = \dfrac{1}{3}(\hat{i}+2\hat{j}+2\hat{k})$$
  • Question 5
    1 / -0
    If $$\overrightarrow a$$ and $$\overrightarrow b$$ are unit vectors, then angle between $$\overrightarrow a$$ and $$\overrightarrow b$$ for $$\sqrt 3 \overrightarrow a - \overrightarrow b$$ to be unit vector is
    Solution
    $${\textbf{Step-1: Apply unit vector property.}}$$
                     $${\text{Given,}}$$
                     $$ \bar a$$ $${\text{and}}$$ $$\bar b$$ $${\text{are unit vectors and}}$$ $$( \sqrt 3 \bar a - \bar b)$$ $${\text{is also unit vector.}}$$
                      $${\text{Let angle be}}$$ $$\theta$$
                      $$\Rightarrow \bar a. \bar b =| \bar a| | \bar b| cos \theta$$        $${\text{.....Dot product of two vectors}}$$
                     $${\text{But,}}$$ $$\bar a$$ $${\text{and}}$$ $$ \bar b $$ $${\text{are unit vectors.}}$$
                      $$|\bar a |=$$  $$| \bar b |= 1$$ 
                      $$\Rightarrow \bar a. \bar b =cos \theta$$  $$....(1)$$
                      $$( \sqrt 3 \bar a - \bar b) =1$$  $${\text{also unit vector.}}$$
    $${\textbf{Step-2: Squaring on both side and find angle.}}$$ 
                      $$( \sqrt 3 \bar a - \bar b)^2 =1$$
                      $$( \sqrt 3 )^2 | \bar a|^2 - 2 \sqrt3 |\bar a. \bar b| + | \bar b|^2 =1$$        $$.......\because (a-b)^2 = a^2-2ab +b^2$$
                     $$\Rightarrow 3(1) + (1) - 2 \sqrt3 cos \theta = 1$$ $$....(1)$$
                     $$\Rightarrow 4 - 2 \sqrt3 cos \theta = 1$$
                     $$\Rightarrow  2 \sqrt3 cos \theta = 3$$
                     $$\Rightarrow cos \theta = \dfrac{\sqrt3}{2} = cos 30 ^\circ$$
                     $$\Rightarrow  \theta  = 30 ^\circ$$
    $${\textbf{Hence, the option (C) is correct.}}$$
  • Question 6
    1 / -0
    If $$a.b=0$$ and $$a+b$$ makes an angle of $${ 60 }^{ o }$$ with $$b$$, then $$\left| a \right| $$ is equal to
    Solution
    We have $$a.b=0\Rightarrow a\bot b$$
    so, vectors $$a,b$$ and $$a+b$$ form a right angled triangle
    In $$\triangle PQR\quad $$
    $$\tan { { 60 }^{ o } } =\cfrac { \left| a \right|  }{ \left| b \right|  } $$
    $$\Rightarrow \sqrt { 3 } =\cfrac { \left| a \right|  }{ \left| b \right|  } $$
    $$\Rightarrow \left| a \right| =\sqrt { 3 } \left| b \right| $$
  • Question 7
    1 / -0
    If $$a\cdot b =0$$ and $$a + b$$ makes an angle $$60^o$$ with $$a$$, then
    Solution
    Given, $$a\cdot b = 0$$
    Now, $$(a + b)\cdot a = |a + b||a| \cos 60^o$$
    $$\Rightarrow a\cdot a + b\cdot a = |a + b| |a| \dfrac{1}{2}$$
    $$\Rightarrow |a|^2 + 0 = \dfrac{|a + b| |a|}{2}$$
    $$\Rightarrow 2 |a| = |a + b|$$
    On squaring both sides, we get
    $$4 |a|^2 = |a|^2 + |b|^2 + 2 a\cdot b \cos \theta$$
    $$4 |a|^2 = |a|^2 + |b|^2 + 2 |a| |b| \cos \theta$$
    $$\Rightarrow 3 |a|^2 = |b|^2 + 0 (\because |a| |b| \cos \theta = a \cdot b = 0 )$$
    $$\Rightarrow \sqrt 3 |a| = |b|$$
  • Question 8
    1 / -0
    If $$a\times b=c$$, $$b\times c=a$$ and $$a,b,c$$ be the mod of the vectors $$a,b,c$$ respectively, then
    Solution
    Since, $$a\times b=c$$
    Thus $$ \left( b\times c \right) \times b=c$$
    $$\Rightarrow \left( b\cdot b \right) c-\left( b\cdot c \right) b=c$$
    $$\Rightarrow \left( b\cdot b \right) =1$$,    $$c\cdot b=0$$
    $$\Rightarrow { b }^{ 2 }=1$$ i.e., $$b=1$$
    $$ b$$ is a unit vector
    Therefore, $$ \left| c \right| =\left| a \right| \Rightarrow c=a$$
  • Question 9
    1 / -0
    If $$\widehat i + \widehat j, \widehat j + \widehat k, \widehat i + \widehat k$$ are the position vectors of the vertices of a $$\Delta ABC$$ taken in order, then $$\angle A$$ is equal to
    Solution
    Let position vector of the vertices are
    $$OA = \widehat i + \widehat j, OB = \widehat j + \widehat k$$
    and $$OC = \widehat i + \widehat k$$
    Now, $$AB = - \widehat i + \widehat k$$
    and $$AC = \widehat k - \widehat j$$
    $$\therefore \cos \theta = \dfrac{(AB).(AC)}{|AC||AC|}$$
    $$= \dfrac{(-\widehat i + \widehat k) . (\widehat k - \widehat j)}{\sqrt{1^2 + 1^2} \sqrt{1^2 + 1^2}}$$
    $$= \dfrac{(\widehat k)^2}{\sqrt 2 \sqrt 2}  = \dfrac{1}{2}$$
    $$\Rightarrow \theta = \dfrac{\pi}{3}$$
  • Question 10
    1 / -0
    In the given diagram, if PQ$$=$$A, QR$$=$$B and RS$$=$$C, then PS will be equal to : 

    Solution
    According to polygon law of vector addition
    $$A+B=PR$$
    and $$PR+RS=PS$$
    $$\Rightarrow A+B+C=PS$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now