$${\textbf{Step-1: Apply unit vector property.}}$$
$${\text{Given,}}$$
$$ \bar a$$ $${\text{and}}$$ $$\bar b$$ $${\text{are unit vectors and}}$$ $$( \sqrt 3 \bar a - \bar b)$$ $${\text{is also unit vector.}}$$
$${\text{Let angle be}}$$ $$\theta$$
$$\Rightarrow \bar a. \bar b =| \bar a| | \bar b| cos \theta$$ $${\text{.....Dot product of two vectors}}$$
$${\text{But,}}$$ $$\bar a$$ $${\text{and}}$$ $$ \bar b $$ $${\text{are unit vectors.}}$$
$$|\bar a |=$$ $$| \bar b |= 1$$
$$\Rightarrow \bar a. \bar b =cos \theta$$ $$....(1)$$
$$( \sqrt 3 \bar a - \bar b) =1$$ $${\text{also unit vector.}}$$
$${\textbf{Step-2: Squaring on both side and find angle.}}$$
$$( \sqrt 3 \bar a - \bar b)^2 =1$$
$$( \sqrt 3 )^2 | \bar a|^2 - 2 \sqrt3 |\bar a. \bar b| + | \bar b|^2 =1$$ $$.......\because (a-b)^2 = a^2-2ab +b^2$$
$$\Rightarrow 3(1) + (1) - 2 \sqrt3 cos \theta = 1$$ $$....(1)$$
$$\Rightarrow 4 - 2 \sqrt3 cos \theta = 1$$
$$\Rightarrow 2 \sqrt3 cos \theta = 3$$
$$\Rightarrow cos \theta = \dfrac{\sqrt3}{2} = cos 30 ^\circ$$
$$\Rightarrow \theta = 30 ^\circ$$
$${\textbf{Hence, the option (C) is correct.}}$$